Divergence of the Floquet-Magnus expansion in a periodically driven energy bounded system

Taiki Haga, Kyoto University

- Floquet theory

Periodically driven quantum systems:

 $H(t) = H_0 + \cos \omega t H_1$, $\omega = 2\pi/T$

Time evolution operator:

 $i\partial_t U(t) = H(t)U(t), \qquad U(0) = I$

Floquet Hamiltonian H_F is defined by

 $e^{-iH_FT} = U(T)$

Floquet-Magnus expansion:

$$H_F = \sum_{n=0}^{\infty} \Omega_n T^n$$

Conjecture

The energy of the system remains finite. ⇒ The FM expansion converges

The driven system indefinitely heats up. ⇒ The FM expansion diverges

– Problem

Driven harmonic oscillator: $H(t) = \frac{1}{2}p^{2} + \frac{1}{2}\omega_{0}^{2}x^{2} + gx\cos\omega t$ The FM expansion converges for $T < \frac{2\pi}{\omega_{0}}$. Driven anharmonic oscillator $H(t) = \frac{1}{2}p^{2} + \frac{1}{2}\omega_{0}^{2}x^{2} + \frac{1}{4}\beta x^{4} + gx\cos\omega t$

A naïve expectation If β and T are sufficiently small,... The energy remains finite. ⇒ The FM expansion converges?

- Summary of our results

- > The energy of the system remains finite.
- > However, the FM expansion diverges for any non-zero T and β .