Nonequilibrium physics in multicellular systems

川口喬吾 Kyogo Kawaguchi Riken BDR (from Sep 2018)

Outline

1. Skin (tissue) homeostasis Interacting particle system

2. Collective motion in cultured neural stem cells Active nematics

3. Acknowledgements

1. Skin homeostasis is maintained by nearest neighbor fate coupling

[Science 352, 1471 (2016), Phys Rev E 96 012401 (2017), Cell Stem Cell 23, 677 (2018)]

Tissue homeostasis: Epidermal stem cells are confined in a two-dimensional layer

Neighbor fate coupling?

- Model for "voters"
- and critical coarsening
- Universality class (two absorbing states)

Dornic et al. Phys. Rev. Lett. 87, 045701 (2001) Hammal et al. Phys. Rev. Lett 94, 230601 (2005)

~10 years ago: clonal analysis showed scaling behavior

Single cell labeling in live mice (Cre-induced)

Critical birth death model explains scaling

Athreya and Ney "Branching Processes" (Dover) Review: Klein & Simons, Development (2011)

Summary of scaling: experiment and theory

Problem of 2D

Fate coordination can be quantified using "fluctuation test"

Data shows that fates of neighboring cells are coordinated

Time scale of coordination: **1-2 days**

Length scale of coordination: size of a single cell

Modeling neighboring fate coupling by local density feedback

<u>Cell Stem Cell 23, 677 (2018)</u>

From more data analysis:

Making model:

Division

Modeling neighboring fate coupling by local density feedback

2L

Deriving the voter model action from particle dynamics

Many-body Langevin equation:

-> Continuum dynamics of labeled cell density $\varphi(\vec{x};t)$

- -> MSRDJ field theory
- -> linearize (around uniform density) -> lots of Gaussian integrals
- -> renormalization

-> Voter model action (+ irrelevant terms)

-> Dynamics:
$$\partial_t \varphi = D \nabla^2 \varphi + \sqrt{\varphi (1-\varphi)} \xi$$

Differentiation

1D system

Proliferation

2L

Model has two regimes separated at the interaction length scale

Crossover observed in skin data

Feedback length scale (L) in the skin is the size of a single cell = neighbor fate coupling

Feedback length scale can be different across tissues

 $L \sim$ single cell level (neighboring feedback) Signaling through adhesion, Notch-Delta, etc (ex: <u>skin</u>, intestinal crypt)

 $L \sim$ scale of >10 cells

Tissue stretching/compression induced mechanical feedback

Quorum sensing, growth factor related feedback

(ex: seminiferous tubule 精細管)

2. Topological defects induce cell flow

[With Ryoichiro Kageyama and Masaki Sano, Nature 545 327 (2017)] [Ongoing work with Masahito Uwamichi]

Neural stem cells

20 um Phase

Phase contrast image

Growth

Local alignment at high density

Multipotent and culturable

Large scale image

Phase contrast

1 mm

Topological defects in cell culture

bioRxiv (Dec 13th 2018)

Liquid-crystal organization of liver tissue

D Hernan Morales-Navarrete, Hidenori Nonaka, D Andre Scholich, D Fabian Segovia-Miranda,

D Walter de Back, Kirstin Meyer, Roman L Bogorad, Victor Koteliansky, Lutz Brusch,

D Yannis Kalaidzidis, Frank Julicher, D Benjamin M. Friedrich, D Marino Zerial

doi: https://doi.org/10.1101/495952

Biopolar cell polarity axis (hepatocytes)

Cell flow was induced by topological defects

+1/2 defect is the "sink"

- 1/2 defect is the "source"

Geometry induced flow in active systems

Activity in nematic systems can induce

<u>macroscopic active force</u> = $-\gamma$

$$-\eta \nabla \cdot Q$$

Spatial inhomogeneity in pattern

Q-tensor (measures the direction and extent of ordering)

$$Q_{ij} = S(n_i n_j - \delta_{ij}/2)$$

 $\eta~$ = 0 in passive systems

Blackwell et al., Soft Matter (2016)

Geometry driven active transport

Mouse/rat brain:

Summary

- Some concepts in nonequilibrium physics are useful in understanding multicellular phenomena
- Cell fate dynamics of skin stem cells seem to follow the 2D voter model
- Geometry induced flow in active systems as a mechanism of cell flow control

Tissue homeostasis

Experiments:

Kailin Mesa Katherine Cockburn David Gonzalez Valentina Greco (Yale School of Medicine)

Theory:

Allon M. Klein Harvard Medical School

Hiroki Yamaguchi

Takahiro Sagawa Univ. Tokyo

Active neural stem cells

Masaki Sano Univ. Tokyo

Ryoichiro Kageyama Kyoto Univ.

Masahito Uwamichi Univ. Tokyo

Started lab in Kobe

Technical Staffs Yuko Sakaide Lisa Yamauchi

From FY 2019 Kyosuke Adachi Yosuke Fukai Daiki Nishiguchi

Visiting student Uwamichi Masahito (U Tokyo) →

- Some concepts in nonequilibrium physics are useful in understanding multicellular phenomena
- Cell fate dynamics of skin stem cells seem to follow the 2D voter model
- Geometry induced flow in active systems as a mechanism of cell flow control

Thank you!