基研研究会・iTHEMS研究会 2018

「非平衡系の物理学― 階層性と普遍性―」

2018年12月26-28日@京都大学基礎物理学研究所・パナソニック国際交流ホール

低エネルギー原子核反応における非平衡過程

関澤 一之

新潟大学 研究推進機構 超域学術院

今日の発表で伝えたいこと

▶ 原子核をぶつけたとき,何が起こるのか?

荷電平衡過程 Charge equilibration *N/Z* エネルギーの散逸 Energy dissipation TKEL 超流動の位相の変化 Superfluid phase $|\Delta(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

質量平衡過程 Mass equilibration *A* 質量数分布の幅の増大 Mass distribution width

 σ_A

"高エネルギー"ではない!!

Animation taken from: Brookhaven National Laboratory Website (http://www.bnl.gov/rhic/)

2つの原子核を"そっとぶつける"

フェルミ粒子多体系の非平衡ダイナミクス

▶ 私の行っている研究: スパコンを用い,量子多体理論に基づく数値シミュレーションを実施

様々な量子多体ダイナミクスの記述が必要

最近接距離

大きい

小さい

 \checkmark There is no adjustable parameter on reaction dynamics

K. Sekizawa

Thu., Dec. 27, 2018

実時間・実空間で原子核反応を記述

1) 入射核・標的核の基底状態を計算

⁶⁴Niと²³⁸Uの衝突: 荷電平衡過程

フラグメントのN/Z vs. 衝突径数b

✓ 衝突径数(最近接距離)が小さくなると、系は荷電平衡に向かう

※色の違いは変形したウランの向き

²³⁸Uの向きy方向, *b*=5.5 fmの場合 例)

y

⁶⁴Niと²³⁸Uの衝突でどの原子核が生成されるか(生成断面積)

KS and K. Yabana, PRC88(2013)014614; KS, PRC96(2017)014615

荷電平衡過程によって様々な原子核が生成される

Expt.: L. Corradi et al., PRC**59**(1999)261

⁶⁴Niと²³⁸Uの衝突: <u>エネルギーの散逸</u>

重いフラグメントの核子数 vs. 衝突径数b

✓ ²³⁸Uから⁶⁴Niへ,多数の核子が移行している

準核分裂過程

重い核の核融合反応を妨げる主要な反応過程

 64 Ni+ 238 U at E_{lab} =390 MeV

KS and K. Yabana, PRC93(2016)054616

準核分裂過程の数値シミュレーション

ウランの先端に衝突 ²⁰⁸Pbの殻効果 ウランの側面に衝突 より質量対称に分裂

 ${}^{64}\text{Ni}+{}^{238}\text{U}$ at $E_{\text{lab}}=390 \text{ MeV}$

KS and K. Yabana, PRC93(2016)054616

散逸したエネルギー・質量平衡化の傾向を定量的に再現

運動エネルギーとフラグメント質量の相関

Expt.: E.M. Kozulin et al., PLB686(2010)227

反応の微視的理解 → 未知原子核の生成へ

M. Thoennessen, Rep. Prog. Phys. 76, 056301 (2013)

今日の発表で伝えたいこと

▶ 原子核をぶつけたとき,何が起こるのか?

荷電平衡過程 Charge equilibration *N/Z* エネルギーの散逸 Energy dissipation

TKEL

超流動の位相の変化 Superfluid phase $|\Delta(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

質量数分布の幅の増大 Mass distribution width

 σ_A

最近の研究の1つは、2018年1月にPRLに掲載:

PHYSICAL REVIEW LETTERS 120, 022501 (2018)

Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in ⁵⁸Ni + ⁶⁰Ni Reactions

E. Williams,^{1,*} K. Sekizawa,² D. J. Hinde,¹ C. Simenel,¹ M. Dasgupta,¹ I. P. Carter,¹ K. J. Cook,¹ D. Y. Jeung,¹ S. D. McNeil,¹ C. S. Palshetkar,^{1,†} D. C. Rafferty,¹ K. Ramachandran,^{1,‡} and A. Wakhle¹ ¹Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 2601, Australia
²Faculty of Physics, Warsaw University of Technology, ulica Koszykowa 75, 00-662 Warsaw, Poland

(Received 16 August 2017; revised manuscript received 27 October 2017; published 10 January 2018)

Australian National University (ANU) との共同研究

E. Williams

D.J. Hinde

M. Dasgupta

C. Simenel

反応によって生成された原子核の質量分布

▶ 従来の理論では、分布の幅を定量的に記述することができなかった

Variational space can be controlled by "state" and "observable"

The action-like quantity defined by Balian and Vénéroni

$$J = \operatorname{Tr}\left[\hat{A}(t_1)\hat{D}(t_1)\right] - \int_{t_0}^{t_1} \operatorname{Tr}\left[\hat{A}(t)\left(\frac{d\hat{D}(t)}{dt} + i\left[\hat{H}(t), \hat{D}(t)\right]\right)\right]dt$$

 $\hat{D}(t)$: describes the state of the system $\hat{A}(t)$: describes the evolution of the observable in the Heisenberg picture

> R. Balian and M. Vénéroni, Phys. Rev. Lett. 47, 1353 (1981); Ann. Phys. 216, 351 (1992). C. Simenel, Phys. Rev. Lett. 106, 112501 (2011); Eur. Phys. J. A 48, 152 (2012).

> > Thu., Dec. 27, 2018

Numerical implementation of TDRPA for the mass width

R. Balian and M. Vénéroni, Phys. Rev. Lett. 47, 1353 (1981); Ann. Phys. 216, 351 (1992).
C. Simenel, Phys. Rev. Lett. 106, 112502 (2011); Eur. Phys. J. A 48, 152 (2012).

Numerical implementation of TDRPA for the mass width

The Balian-Vénéroni prescription (TDRPA):

$$\sigma_X^2(t_1) = \lim_{\varepsilon \to 0} \frac{\operatorname{Tr}\left\{ \left[\rho(t_0) - \rho_X(t_0, \varepsilon) \right]^2 \right\}}{2\varepsilon^2}$$

$$\rho_X(t_1,\varepsilon) = e^{i\varepsilon\hat{X}}\rho(t_1)e^{-i\varepsilon\hat{X}}$$

R. Balian and M. Vénéroni, Phys. Rev. Lett. 47, 1353 (1981); Ann. Phys. 216, 351 (1992).
C. Simenel, Phys. Rev. Lett. 106, 112502 (2011); Eur. Phys. J. A 48, 152 (2012).

 58,60 Ni+ 60 Ni at $E/V_{\rm B}$ =1.4

E. Williams, KS, D. Hinde et al., Phys. Rev. Lett. 120, 022501 (2018)

拡張理論によって、分布の幅の増大を定量的に記述

Width of the mass ratio distribution, σ_{MR} : Expt. vs Theory

 58,60 Ni $+^{60}$ Ni at $E/V_{B}=1.4$

E. Williams, KS, D. Hinde et al., Phys. Rev. Lett. 120, 022501 (2018)

拡張理論によって、分布の幅の増大を定量的に記述

Width of the mass ratio distribution, σ_{MR} : Expt. vs Theory

今日の発表で伝えたいこと

▶ 原子核をぶつけたとき,何が起こるのか?

荷電平衡過程 Charge equilibration *N/Z* エネルギーの散逸

Energy dissipation TKEL 超流動の位相の変化 Superfluid phase $|\Delta(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

質量平衡過程 Mass equilibration A

TDSLDA (Time-Dependent Superfluid Local Density Approximation)

TDSLDA: TDDFT with local treatment of pairing

Kohn-Sham scheme is extended for non-interacting quasiparticles

TDSLDA equations (formally equivalent to TDHFB or TD-BdG equations)

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_{k,\uparrow}(\boldsymbol{r},t)\\u_{k,\downarrow}(\boldsymbol{r},t)\\v_{k,\uparrow}(\boldsymbol{r},t)\\v_{k,\downarrow}(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_{\uparrow\uparrow}(\boldsymbol{r},t) & h_{\uparrow\downarrow}(\boldsymbol{r},t) & 0 & \Delta(\boldsymbol{r},t)\\h_{\downarrow\uparrow}(\boldsymbol{r},t) & h_{\downarrow\downarrow}(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0\\0 & -\Delta^{*}(\boldsymbol{r},t) & -h_{\uparrow\uparrow}^{*}(\boldsymbol{r},t) & -h_{\uparrow\downarrow}^{*}(\boldsymbol{r},t)\\\Delta^{*}(\boldsymbol{r},t) & 0 & -h_{\downarrow\uparrow}^{*}(\boldsymbol{r},t) & -h_{\downarrow\downarrow}^{*}(\boldsymbol{r},t)\end{pmatrix} \begin{pmatrix}u_{k,\uparrow}(\boldsymbol{r},t)\\u_{k,\downarrow}(\boldsymbol{r},t)\\v_{k,\uparrow}(\boldsymbol{r},t)\\v_{k,\downarrow}(\boldsymbol{r},t)\end{pmatrix}$$

$$h_{\sigma} = \frac{\delta E}{\delta n_{\sigma}} \quad : \text{ s.p. Hamiltonian} \\ \Delta = -\frac{\delta E}{\delta \nu^{*}} \quad : \text{ pairing field} \\ \lambda = -\frac{\delta E}{\delta \nu^{*}} \quad : \text{ pairing field} \\ n_{\sigma}(\boldsymbol{r}, t) = \sum_{E_{k} < E_{c}} |v_{k,\sigma}(\boldsymbol{r}, t)|^{2} \quad : \text{ number density} \\ \boldsymbol{\nu}(\boldsymbol{r}, t) = \sum_{E_{k} < E_{c}} u_{k,\uparrow}(\boldsymbol{r}, t) v_{k,\downarrow}^{*}(\boldsymbol{r}, t) \quad : \text{ anomalous density} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \operatorname{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] \quad : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}}$$

A large number (10⁴-10⁶) of 3D coupled non-linear PDEs have to be solved!! # of qp orbitals ~ # of grid points

低エネルギー原子核反応における非平衡過程

Thu., Dec. 27, 2018

TDSLDA (Time-Dependent Superfluid Local Density Approximation)

TDSLDA: TDDFT with local treatment of pairing

Kohn-Sham scheme is extended for non-interacting quasiparticles

TDSLDA equations (formally equivalent to TDHFB or TD-BdG equations)

A large number (10⁴-10⁶) of 3D coupled non-linear PDEs have to be solved!! # of qp orbitals ~ # of grid points

Piz Daint, CSCS, Switzerland (No. 6) TITAN, ORNL, USA (No. 7)

TSUBAME3.0, Japan (No. 19)

The fastest machine: Summit, ORNL, USA GPU, 188 PFlops/s

Present computing capabilities:

- Full 3D (w/o symmetry restrictions)
- Volume as large as 100³ lattice points
- Evolution up to 10^6 time steps (as long as 10^{-19} sec)

The Pairing field provides a variety of dynamic excitation modes

K. Sekizawa

Result of TDSLDA simulation:

Phase discontinuity creates a vortex ring which decays into a vortex line

time*eF= 0

G. Wlazłowski, A. Bulgac, M.M. Forbes, and K.J. Roche, Phys. Rev. A 91, 031602 (2015)

The cascades of solitonic excitations have been identified experimentally

M.J.H. Ku, B. Mukherjee, T. Yefsah, and M.W. Zwierlein, Phys. Rev. Lett. 116, 045304 (2016)

Having a validated tool at hand we explore new physics particular to fermionic systems

Spin-imbalance (polarization)!!

Fermionic superfluidity is due to the Cooper pairing mechanism

Then, what happens if the numbers of men/women are imbalanced??

But, what about dynamics??

Answer: phase separation

superfluid (paired) gas is surrounded by normal gas

M.W. Zwierlein et al., Science 311, 492 (2006)

Spin polarization affects the stability of topological defects

Spin polarization may hinder vortex crossings/reconnections

G. Wlazłowski, K.S., M. Marchwiany, and P. Magierski, Phys. Rev. Lett. 120, 253002 (2018)

What's more? - Implication to quantum turbulence

Left: Work by Leonardo da Vinci

Right: Fig. 1 taken from A. Villois et al., Phys. Rev. E **93**, 061103(R) (2016)

Computational/theoretical challenge

Microscopic simulation of quantum turbulence in superfluid fermi gas

 $[arepsilon_F^{-1}]$

0

 $|\Delta_1(\boldsymbol{r},t)|e^{\mathrm{i}\varphi_1(\boldsymbol{r},t)}$

3D, TDSLDA calculations (Fayans w/o LS) predicts novel phenomena associated with <u>solitonic excitations!!</u>

Q. What happens when two superfluid nuclei with different phases collide??

$$\Delta arphi \; (\equiv arphi_1 - arphi_2)$$

 $|\Delta_2(\boldsymbol{r},t)|e^{\mathrm{i}\varphi_2(\boldsymbol{r},t)}$

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

低エネルギー原子核反応における非平衡過程

Thu., Dec. 27, 2018

TDSLDA results: $^{240}Pu + ^{240}Pu$ head-on collisions (E/V_{Bass}=1.1)

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

低エネルギー原子核反応における非平衡過程

Thu., Dec. 27, 2018

Additional energy is required to attach two superfluids with different phases

*It does not depend on the absolute value of the pairing!

e.g.) $S=\pi R^2$, $L \sim R=6$ fm, $n_s=0.08$ fm⁻³ $\rightarrow E \sim 30$ MeV

- S: Attaching area
- *L*: Length scale over which the phase varies
- *n_s*: Superfluid density

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

Additional energy is required to attach two superfluids with different phases

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

Fusion reaction is suppressed by the phase difference

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. **119**, 042501 (2017)

Fusion reaction is suppressed by the phase difference

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

Fusion reaction is suppressed by the phase difference

 $*E_{\text{fusion}}$: the lowest energy at which fusion reaction is observed

P. Magierski, K.S., G. Wlazłowski, Phys. Rev. Lett. 119, 042501 (2017)

When two superfluid nuclei with different phases collide solitonic excitations might be induced

When two superfluid nuclei with different phases collide solitonic excitations might be induced

$$\Delta \varphi \ (\equiv \varphi_1 - \varphi_2)$$

$$|\Delta_1(\mathbf{r}, t)| e^{i\varphi_1(\mathbf{r}, t)} \qquad |\Delta_2(\mathbf{r}, t)| e^{i\varphi_2(\mathbf{r}, t)}$$

When two superfluid nuclei with different phases collide solitonic excitations might be induced

まとめ

▶ 原子核をぶつけると、様々な非平衡過程が起こる

荷電平衡過程 Charge equilibration *N/Z* エネルギーの散逸 Energy dissipation TKEL 超流動の位相の変化 Superfluid phase $|\Delta(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

質量平衡過程 Mass equilibration A 質量数分布の幅の増大 Mass distribution width

 σ_A

Kazuyuki Sekizawa Specially Appointed Assistant Professor Center for Transdisciplinary Research Institute for Research Promotion, Niigata University 8050, Ikarashi Ninoho, Nishi-ku, Niigata City, Niigata 950-2181, Japan sekizawa @ phys.sc.niigata-u.ac.jp http://sekizawa.fizyka.pw.edu.pl/english/