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Big picture
Goal: understand some physically interesting quantity ©
This is a resurgence workshop. We think in terms of
O(N) ~ an)\n + Ze_% Zpk,c:)\k 4.
n c k
in QM, QFT, string theory...
But what is A in QFT context?

e Usually 4 is a running coupling
e Often it isn’t small at the energy scales of interest

How do we accomplish anything, then?



The challenge

ldea: find control parameter C, use it to make 4 << 1, compute.

petwave.com

But then what do we learn about the original physics?
e |If there are no phase transitions as a function of C, then we
learn a lot.
e With phase transitions we get a disaster (in practice)!
e Have to understand full resurgence behavior as a
prerequisite for making even qualitative predictions.


http://petwave.com
http://petwave.com

Two approaches

e Supersymmetry
e Studied since ~1980s (in the relevant context)
e Adiabatic Compactification
e Studied since ~2010s, due to Mithat Unsal and
collaborators: Shifman, Yaffe, Poppitz, Dunne, Schafer,
Sulejmanpasic, Tanizaki, Misumi, AC,...



SUSY

Supersymmetry often naturally gives a control parameter C
e C =< VEV of fundamental scalar field >
o Asymptotically-freedom = weak coupling for large C
e SUSY holomorphy = results for all C
e Very nice in its own right!
e | oss of control if SUSY is broken
e Have to hope there are no phase transitions
e Whatever you learn might be tied to specifics of SUSY
setting: specifics of matter content & interactions...
 Resurgence structure often very different from generic
expectations.
e (Cancellations hidden, have to be decoded.



Unsal, Yaffe, Shifman,

Adiabatic compactification ™ z0somward

ldea: break 4D Lorentz, but as little as possible!

St
R3

If circle size L is small, can get weak coupling by asymptotic

freedom
e NB: non-compact R3 = symmetries can break spontaneously.

e |Large L: some symmetries preserved, others spontaneously
broken!
e |n practice the small L limit is useful only if we get same
symmetry breaking pattern at large L and small L
e Assume symmetry breaking pattern doesn’t change at
intermediate L - checkable by lattice simulations.



Plan of the talk

Focus will be on adiabatic compactification

1. Fixed N - already done by Mithat, so I'll be brief.
e Reminder about mass gap and remark on renormalons ...
2. 't Hooft large N limit: volume independence, and Hagedorn
3. Small-circle large N limit: emergent extra dimension, and the
fate of the mass gap.




Part 1

Small L, fixed N.



Self-Higgsing
S

R3

When gauge theories are compactified on S1, tr(Polyakov loop)
IS an observable

() = PetdAs = diag (e'?1, ..., e"N)

Eigenvalues are determined dynamically. Their distribution is
very important!



Confinement and center symmetry

Heuristically, Polyakov loop associated to confinement

tr Qk ~ €XP (_ﬁFk quarks)

Confinement ~ infinite cost to have k #= N excess fundamental

quarks.
N quarks make a baryon, and baryon has finite energy.

e S0 expect confinement to be associated with
trQ° =0, k # 0mod N

Indeed, YM (without fundamental quarks) has Zn center symmetry

trQ — wtrQ, w=2™/N

unbroken center = (tr Q%) =0, k # Omod N



Center symmetry and self-Higgsing

L
/dS:E tr Fiu + (D, A3)?

1 4 2

If (tr Q%) = 0 = "(A;) # 0". A, ~compact adjoint Higgs field!

Non-coincident eigenvalues for Q) =
“broken” gauge group SU(N) — U(1)N-1 in long-distance 3D EFT

tr Q" =0 \V/|TL| < N =~ diag(lawv .o 7WN—1)

O]

W-boson mass scale: mw = 21/NL



Coupling flows with center symmetry on R3 x S’

g2

1 \

\ | mm——— Flow for NLA > 1

'N.
h.
.--‘
--

| _1 | Q
(NL) A

The NLA > 1 regime is strongly-coupled at long distances for all L!



Coupling flows with center symmetry on R3 x S’

92

— Flow for NLA < 1

g*(1/NL)

Semiclassically
calculable
regime

A (NI_I)‘1

Q

The NLA < 1 regime gives a weakly-coupled theory at all scales!



Preservation of center symmetry

Mithat already explained that preserving center symmetry at small
L is hard.
e TJo the extent L = 1/T, center symmetry “wants” to break!
* This can be avoided using several ingredients:
 Double-trace deformations
e Light adjoint fermions with periodic BCs

With you favorite method, you can ensure center symmetry is
preserved at small L. Then what?



Small L effective field theory

Suppose N is fixed and LA < 1, with center preserved.
 Thanks to adjoint Higgsing, lots of stuff is heavy:
my /N ~ 1/(NLA) = o
e |ntegrate out the manifestly heavy stuffl What remains?
e N — 1 Cartan gluons, from 3D components of gluon field
strength
* Working out their fate is crucial!



Small L limit in perturbation theory

N - 1 Cartan gluons are classically gapless.

F;i,/ = g°/(27L)€,,00%0"

S(,:/d%' g (0,5)°.
82 L
e o' shift symmetry <= conservation of magnetic charge.

e But there are no magnetic monopoles in perturbation theory.
e So o' are massless to all orders in perturbation theory.



Finite-action field configurations

Since SU(N) — U(1)N~!, 4D BPST instanton breaks up into N
‘monopole-instantons’ with action S;/N = 87/

N — 1 have Q = 1/N, magnetic charges £1 under nearest- . v:

neighbor U(1)’s. The NN one is ‘Kaluza-Klein’ monopole. bt
t Hooft M, ~ 8T /A i(0i—0ir1) N = g2 N
amplitude

core size ~ N L,

typical separation ~ N Let8™ /(33)

A < 1 when NLA < 1, so dilute gas approximation is justified.
e Contrast with usual IR disasters with instantons in YM!



Unsal,

Weak Coupllng COannement Yaffe, Shifman, Poppitz,

Sulejmanpasic,

N
V(O‘) N _m%ve—Sw?/)\ ZCOS(Oi _ 0'7:+1) W

i=1
Dual photons get a mass gap:

My, ~ mW€—4w2/>\‘ sin(mp/N)|, p=1,...,N-1.

Concrete realization of old Mandelstam, 't Hooft, Polyakov dreams:
mass gap driven by proliferation of magnetic monopoles.

String tension also calculable, and is finite. Behaves just as
expected from YM.
Poppitz, Erfan S. T, Anber, ... 2017 onward

Can also profitably study & dependence.

Unsal, Yaffe, Tanizaki, Misumi, Fukushima, AC, Poppitz, Schafer, ...



Resurgent ambiguities in adiabatic compactification

Beyond leading order in semi-classical expansion,
neutral bion amplitudes are (usually) ambiguous:

[M@Mz} ~ 11 6_167T2/>\

(exactly massless adjoint fermions change the story)

This ambiguity does not vanish exponentially with N.

Arises from quasi-zero mode integration. A kind of generalized
instanton effect, so it should be possible to relate to some
proliferation of Feynman diagrams.

« Feynman diagrams on R3 x S1 #* Feynman diagrams on R4
. Color-sums related to S' momentum sums

Eguchi, Kawai; Gross, Kitazawa, ...



Comments on renormalons

What is a renormalon?

My preferred definition: it is an ambiguity in the Borel resummation

of perturbation theory, with a size which doesn’t vanish at large N.

e Other definitions are used in some of the literature. | think this
one is better, for reasons I'll explain next.

What is the interplay of renormalons with adiabatic
compactification?

Argyres, Unsal; Anber, Sulejmanpasic;
Ashie, Ishikawa, Takaura, Morikawa, Suzuki, Takeuchi, ...

4D:

2D: Dunne, Unsal; Fujimori, Kamata, Misumi, Nitta, Sakai;



Comments on renormalons

On |R4, renormalons come from diagrams like this:

Renormalons arise from an IR divergence in these diagrams, give
rise to ambiguities in Borel summed perturbation theory, so in YM
ambiguity ~ =+ ie ¥

# Is such that it can be cancelled by an ambiguity in some

‘condensate’, e.g. (trF/fv) ~ A* . Remember: A ~ /46‘8”2/(’1'11/3)

« Has to be like this for consistency! A is the only scale.



Comments on renormalons

What should we expect with adiabatic compactification?

Adiabatic compactification eliminates IR divergences by design!
e Are renormalons gone? The Feyman diagrams that gave them
on R* aren’t divergent any more.
e If we define renormalon = certain Feynman diagrams with
certain divergences, then, yes they’re gone.
e My view: not a good definition. Number and value of
individual Feynman diagrams is not a physical invariant!



Comments on renormalons

Distinction between Borel singularities “from IR divergences” or

“from number of individual diagrams” is not physical.

e What matters: size of effect, how to understand it, how it fits
with other dynamics, and so on.

Hence my preferred definition: renormalons are an ambiguity in the

Borel resummation of perturbation theory, with a size which

doesn’t vanish at large N.

e This is the definition assumed in the Argyres-Unsal and Dunne-
Unsal papers that kicked off modern QFT resurgence.

So what should we expect about renormalons at small L?



Renormalons in adiabatic compactification

With adiabatic compactification, there is another scale in addition
to A, namely 1/L. The physics depends on both!
e Renormalons should depend on 1/L as well, and indeed they do:

ambiguity ~ = ie 4 ~ AP(NLA)*

see e.g. Dunne, Shifman, Unsal 2015

More precisely: we know non-perturbative quantities have
ambiguities like this, due to “neutral bions”.
e |t's harder to explicitly match it to perturbation theory...

but see talk by O. Morikawa on Thursday (Wed in US)!

In any case, this perspective implies that location of Borel
singularities must flow as a function of NLA .



Part 2

't Hooft large N limit



Large N vs adiabatic compactification

Suppose N — oo with A and all other parameters fixed in a theory
with adiabatic circle-size dependence.
 What does it imply?

e Dependence on L is very adiabatic: no dependence at all
e “Eguchi-Kawai reduction”/“large N volume independence”
e in the adjoint QCD example: spectacular Bose-Fermi
cancellations
e More subtle (and not well understood) with double-trace
deformations



Hagedorn instability

Put any confining large N theory on R3x S

Z(B) =Tr e P = /dE p(E)e PE

p(E) = P15 By ~ Agan

Once [ < [y, energy integral diverges! No big change if R’
replaced by some compact manifold M.

= phase transition at or below T;to a phase where p(E)
scales differently.

This is the deconfinement transition to the quark-gluon plasma
phase!



Confinement versus Hagedorn

Can deconfinement as a function of  be avoided?

Z(L) = Tr (—1)FeLH

_ / IE [pp(E) — pr(E)| e "

‘all’ we need are precise-enough cancellations between
pp(E) and pp(E).

With SUSY pz(E) = p(E), E > 0, so no problem.

What about without SUSY?



Required cancellations

Expect Hagedorn scaling for both pz and pg. More precisely:

pB (E)+6+51E2pn1E +e+52Ean2E T

+anBE "

PF (E)%e—l_ﬁlEanlE +€+52E2pn2E -+ ..

an FE "

All terms with positive exponentials must be identical to avoid
an instability!




Avoiding Hagedorn

This degree of conspiracy between bosons and
fermions seem fanciful without supersymmetry.

And indeed, it doesn't work in large N QCD.

Fermionic states — baryons —only for odd N,
which are heavy at large N.

ZocpP) = tr(=D)f e = Zoop(p) = tre

Have to look further afield for a working example.



A special non-SUSY QFT

Consider SU(N) YM coupled to 1 < Ny < 5 flavors of massless
adjoint Majorana fermions: adjoint QCD

e Confining on R* if N;. is not too close to 5.
Np=1= /4 =1 super YM

Otherwise, no SUSY.



Adjoint QCD

Adjoint QCD has lots of light fermionic states for any Ny
tr (F2,2,)10), tr (F2, 2,,2.) 10, ...

But no SUSY, because there are 2(N? — 1) microscopic
bosons and 2N (N* — 1) microscopic fermions



Punchline 1

No phase transitions with Z(f) = tr (— 1) e’ even when
1 < Ny <5.

e QOriginally proposed by Kovtun, Unsal, Yaffe, 2007.

e |ater analytic and many numerical lattice analyses basically
proved it.

At large N, KUY observation has a striking implication:
all Hagedorn instabilities cancel, without SUSY.

Basar, AC, Dorigoni, Unsal,
2013



AC, Shifman,

Punchline 2 Unsal 2018

What could be left after the Hagedorn cancellations?

Naive guess: a few particles worth of 4d degrees of freedom.
H(E) ~exp(VYAIE3Y o logZ ~ 73V

Claim: actually get at most a 2d density of states

A(E) ~ exp(VIE) < logZ ~ (/8

zm/ d°r /g R
M

Just like in SUSY QFT, despite lack of SUSY!



Punchline 2

More precisely, in SU(N) x U(1) ~ U(N) adjoint QCD in
the large N limit we get

log Z = 035_3/ de\/§ 615_1/ d>x VIR
M M
1
~Y ﬁ
If we take N large with geometry fixed,

C3

log Zadjoint QCD = 615—1 /dS:L‘\/ﬁR + non-singular

No sharp cancellations at finite N. But at large N, cancellations
are as strong as in SUSY theories.



Origin of cancellations

First, how do we know whether or not center i1s broken
when L is small?
 One-loop calculations giving

V(Q) ~ 0y Zﬁum 2

n=1

What is the condition for results like this to be valid?



Center symmetry in YM theory

Polyakov loop size ~ ff. When fA < 1, quantum corrections are

small, can compare center-broken and center symmetric extrema.
e |f this was false, we wouldn’t even know that hot YM is
deconfined!

More careful argument: IR divergences, magnetic and electric screening
scales, turning on non-trivial holonomy reduces IR divergences.

So for pure YM theory with LA < 1, one gets

— 1 o2 1 < 1 , —N?

L4 m“]r ‘ N_ﬁ m‘tfll\” ~ L4
n=1 n=1

This implies log Z ~ N?~> - (spatial volume)



Center symmetry in adjoint QCD

Things change in adjoint QCD with periodic boundary conditions

One-loop calculation:

2(np — 1) 1 N
Ve (Q) = > —[tr @2 2,

2 34

o
5 n>1

Potential flips! Minima turn into maxima, and vice versa.

Z \ center symmetry preserved on new minimum

O ~ dlag(l, 627772/]\7’ o 7627T7§(.N—1)/]\7)

(trQ™") =0, n # 0mod N



Center symmetry in adjoint QCD

Evaluate effective potential on its minimum to get log Z

~ 1 B
log Z ~ 7 Vol

Physically, results from +/- grading for physical states.

What happened to the individual quarks and gluons?

Quarks and gluons contribute with Z,, phases
due to €2. Huge cancellations!

Only with a trivial — center-breaking — Polyakov loop do all
fields contribute with one sign!



Center symmetry in adjoint QCD

To see how it works pick a gauge where A4 = const.

QO ~ (e, .., e"N)

Holonomy ~ imaginary chemical potential for colored fields

N
Q(TLF—].) dgp ol id. —3
. Q — 1 1_ p Z(ba 7J¢b
Ve (2) 7 E /(27r)2 og (1 —e Pe )

a,b=1

Implies that contributions weighed by phases in general.

When Q ~ 1,, no phases = N” scaling

But with center symmetry, massive cancelations that convert
N? - 1/N?



Center symmetry in adjoint QCD

Do cancelations work beyond one loop? Yes.

1 n AC, Shifman,
Up = N<trﬂ > Unsal 2018

Ve = B~ (N? fol{un}) + N fi({un}) + N2 fo({un}) + .. )

Write fg as sums of terms with different number of color traces
summed over windings.

 Finiteness of V¢ requires certain properties of these sums

e Some special terms can be estimated explicitly.
e Combination of these features implies all—order result:

log Zadjoint QCD = clﬁ_l /dga?\/§72 + non-singular



Beyond perturbation theory

Discussion so far has been perturbative.
* Non-perturbative effects are irrelevant!

 Non-perturbative effects weighed by powers of e-1/A
 Dimensional transmutation turns this into powers of the

strong scale A
e Dimensional analysis = non-perturbative physics can’t affect

coefficient of #73 in log Z

Perturbation theory is all that matters!



Summary of part 2

If we take a standard large N limit in theories with adiabatic
continuity, fun and magical things happen:
* \olume dependence disappears entirely
* |n best-understood example, adjoint QCD, we find amazing
SUSY-like spectral cancellations.
 Would be nice to understand in detail how twisted Eguchi-
Kawai and double-trace deformed YM manage to avoid
deconfinement from this perspective...

Of course, there is also something less fun:

* We can’t calculate almost anything at large N!

* Field-theory semiclassical methods seem useless.
* |s there any easy way around that?



Part 3

Small-circle large N limit



Paths to large N

't Hooft limit: fix A = g?N at the UV cutoff as well as all physical
parameters, and take N — oo

We can’t solve most interesting 4d gauge theories in this limit.

But we do have adiabatic compactification that lets us solve
some of them on small circles at finite N

If we take an ’t Hooft large N limit, we lose control.

 Large N volume independence forces this!

Is there some other large N limit where we can keep
computational control?



Small circle large N limit

To keep control, we have to ensure my, > A.

NLA < 1

— Flow for NLA << 1

g°(1/NL)

/'\ (NI_I)‘1



Small circle large N limit

To keep control, we have to ensure my, > A.
NLA < 1

New large N limit: fix 7 = NLA, A = g>N and take N — oo.
« If 7 > 1 we have no control - but it should look volume

independent.
e Ifn < 1, we have complete control. Can calculate everything:
mass gap, symmetry breaking, renormalons, theta dependence,

e Solvable large N limits are extremely rare, so we should take
them very seriously.



Large N super-YM at small 7 = NLA

’ll explain how things go for 4d 4/ = 1 pure SU(N) super-YM
theory
 No phase transitions for any L.
e Confines and spontaneously breaks discrete chiral
symmetry at any L.
« Weakly coupled when 7 < 1, even at large N.

What’s the low energy spectrum at large N?



Light fields at small L
For long distances £ > My, = An_l, dynamics is Abelian:

SU(N) = U1)N !

Without SUSY, only classically massless fields are the N - 1
“Cartan gluons”.

NB: they’re physical!
1 N—1
- 2mwigp /N p
Fl, =~ » 2T N (P F,)
p=0
(added fictitious | = 0 mode for notational simplicity; decouples exactly.)

‘color’ label | = Fourier transform of winding label p.



Light fields at small L

For long distances £ > My, = An_l, dynamics is Abelian:

SU(N) = U1)N !

With SUSY, classically massless fields in 3D EFT
are:

e N-1 Cartan gluons, from 3D components of gluon
field strength

e + N-1 ¢4 scalar fields (As fluctuations)
e + N-1 ya fermion fields (Cartan gluinos)
e All these fields sit in the same supermultiplet

I'll focus on the Cartan gluons - the other fields come along for
the ride.

What is the effective action?



Small L limit in perturbation theory

The Cartan gluons are classically gapless.

Fﬁy = g°/(27L)€,,00%0"

3 =\ 2

S = / d’x Amyy (0,,5)
o' shift symmetry <= conservation of magnetic charge.
J,, = Mai ~ eWaFi’”o‘

No magnetic monopoles in perturbation theory
= O' are massless to all orders in loop expansion



Non-perturbative mass gap

Since SU(N) — U(1)N~!, 4D BPST instanton breaks up into N

‘monopole-instantons’ with action S;/N = 87/

Monopole-instantons have Q = 1/N,
and magnetic charges +1,-1 under nearest-neighbor U(1)’s

2 .
't Hooft amplitude M@ ~ 6_87T /AGZ(Ui—UiJrl) A = g%MN

core size ~ N L

typical separation ~ N Let8™ /(33)

A <« 1 when NLA « 1, dilute gas approximation justified at small L.

Contrast with usual IR disasters with instantons in YM!

Monopole-instantons and related excitations induce mass gap.



Long-distance EFT for /' =1 SYM

Since SU(N) — U(1)N~!, 4D BPST instanton breaks up into N
‘monopole-instantons’ with action S;/N = 87/

super-YM has massless adjoint fermions = 2 fermion zero modes
on monopoles;

M, ~ ei(Uz'—UiJrl))\i)\Hl

Monopole-instantons give interactions for light fermions

Contribute to fermionic potential, not the bosonic one.



Long-distance EFT for /' =1 SYM

Any field configuration with fermion zero modes can’t contribute

to bosonic potential.

e Since every BPS configuration has fermion zero modes,
can’t get bosonic potential from any BPS objects.

e Mass gap is induced by topologically-trivial solutions with

finite action and magnetic charge: “magnetic bions” rea
nsal 2007

N

V(o) ‘Super_YM ~ —m%ve_lfj”z/)‘ Z cos(20; — 0,1 + 0541)
i=1

Making sense of this is fun challenge for SUSY connoisseurs.

—871% /)
Mo super—YM ~ mwe



Emergent dimension

More careful look at long-distance EFT for ./ =1 sYM:

S, = /dSQj Amy (0,6)% — miéve—167r2/>\ ZCOS(QOi — Ol — 1) e

1

N minima due to discrete chiral symmetry breaking Z,y — Z,
e Canonically normalize, expand around any given vacuum:

N

So = /dsm Z {((%5@-)2 T M2(2573 — 01— 573+1)2}
1=1

M~ mW6—87T2/)\

A = /L3€_87T2/)\ — M ~ An*, n= NLA



Complete EFT for /=1 SYM

Package scalars as CD gb + 10 dlagonallze guadratic action:

N
SEFT ™~ dSiU Z {|au(1)p|2 T Mg‘q)p‘Q

Mass gap vanishes at large N!

What’s going on?



Emergent dimension
N
So = /dga; Z {((%5@-)2 T M2(2573 — 01— 573+1)2}
1=1
—8772/)\ 2 1
M ~ myye = An® =: —
a

‘color’ label | = position, difference operators = derivatives

Large circular extra dimension L = Na

L/L ~N°?np=3,  LA=Nn?

Disappearing mass gap < decompactification of gapless fields



Emergent dimension

On O(NO) distance scales L. > £ > a
Svn ~ /dgaz dy{|8u<1>|2 + |8§<I>\2—|—
VAU + 2 (VO W + h.c.)}.

spatial Lifshitz scale invariance with z = 2!
T—QF, y— QY7 y
Summary

Took 4D " =1 super-YM, turned on “relevant deformation” —

the circle.

e Atleastif S'is small, resulting flow is to a non-trivial IR fixed
point!

e |s this some weird SUSY thing?



Emergent dimension far from SUSY point

S‘YM /d?’x )\mw(ﬁﬂa)z — m%ve_87T /A Z cos(o; — ojp1) + - -

S|YM — /dS.CE Z {(@L&Z)Q -+ M2(5'@ — 5'7;_|_1)2}
1=1

Fourier-space “mass” ~ M | sin(zp/N) |

S‘YM ~ / d>x dy{\@uc7|2 + |(’9y0\2}

Long distance theory again scale invariant, but now with z = 1
e Tuning to SUSY point tunes IR theory to z = 2.
e SUSY isn’t necessary: just need massless adjoint fermions.



Fundamental matter

If we add nr « N fundamental quarks, have to pick their BCs.
Vo3 + L) = e (23), a=1,...,nF

What'’s effect on emergent dimension story?
o Use index theorems to see how y, couple to o;

Poppitz, Unsal, 2009; AC, Schafer, Unsal, 2016; AC, Poppitz 2016

Each fundamental quark field brings in two fermion zero

modes;

they sit on one of the N monopole-instantons.

e Which monopole gets the fundamental zero modes depends
on BCs.

e Result: fundamentals don’t propagate into extra dimension!

Fundamental fermions live on 3d branes in a 4d bulk spacetime



R3

Emergent direction y

AC, Poppitz 2016




Wait. what? AC, Poppitz 2016

Took close look at rare case of solvable large N limit.

Got two startling things.

(1) Long-distance theory is non-trivially scale-invariant.

(2) Put 4D QFT on circle. Pushed circle to be small, but
then somehow NP dynamics generated a large circle!

Adjoint matter lives macroscopic 4d bulk,
fundamental matter lives on branes.

How reliable are these conclusions?

Why is this happening?



Gaplessness

AC, Poppitz 2016

2 . .
s Z o, allowed in long-distance EFT?
a
No.

Compactness of SU(N) < magnetic charge quantization

Potential only has differences of ai, 0j; generates derivatives!

exp (z

2

k

—

Crp Ok

:

Impossible to get mass term for emergent 4D o scalar!

cos(7-1) ~ > 02 ~ [d3xdyc? is forbidden.



Gaplessness

So far neglected “Kahler potential” - in general it isn’t trivial!
Sy = / Pz (0,0%)% — / Pz gay(N) 00 0" 0"
a a,b

Can’t gap out large N theory!

From extra dimension point of view, this is wave function
renormalization = anomalous dimensions!

* Resulting anomalous dimensions vanish as NLA — O
e So at large N, get non-trivial Lifshitz scale-invariant IR
fixed points, which are weakly-coupled when NLA « 1.



Interpreting extra dimension

Re-examine how extra dimension appears in e.g. deformed
YM case

V(@) ~ ) (0j—0j11)°
J
The mass eigenstates are labeled by the Fourier dual of “color”
index j:
0; = Z 6_27Tipj/NO'Z/9
p
My, ~ mW6_4W2/)‘\ sin(mp/N)]

But the dual of the index | is the winding number! So the lattice
momentum quantum number is the holonomy winding number.



Interpreting extra dimension

Tempting but incomplete interpretation follows.
We took large N confining theory, put it on tiny circle.

Confining string winding modes become light: T-duality

S




Interpreting extra dimension

Since “T-dual” dimension comes from confining string, this extra

dimension must be a discretized one!

e Wind N times = no winding, because baryons aren’t confined.

e Upper cutoff on winding = upper cutoff on emergent
momentum

n2 p2R2 \ p2
R2 o2 ’ RQ 7

R=d/R

This formula only valid for p « N.

This is of course just what we see!



Interpreting extra dimension

Truth in advertising:
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Problems with T-duality interpretation

Truth in advertising:

* No stringy interpretation of the Lifshitz scaling.
* Relating size of extra dimension to string tension confusing.
e At small L, R3 string tension # S? string tension.

LI} ~ CVI/R?,
LL ~J NCVval

Extra factor of N unexpected from T-duality
. ButS! strings are very short, so not best definition of agl Isn’t

obvious
* T-duality interpretation very tempting, but not proven.



Gaplessness

Big open question: what is the IR behavior when NLA »> 17

 Naively expect smooth behavior in # = NLA, with volume
independence setting in smoothly for large #

* Three possibilities occur to me:
 Behavior really is smooth - then the theory has a gapless

sector even for large #!
e Large N phase transition at some critical # to a gapped

phase

e T-duality picture is actually correct, and somehow allows
physics to be smooth in 7, without implying large 7
gaplessness



Curvature?

* The emergent dimension is flat when center symmetry is
unbroken
 We could make center symmetry break spontaneously or
explicitly.
 Does the extra dimension pick a warp factor, so that the
emergent spacetime becomes curved?
 Work in progress!
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Conclusions

Yang-Mills and QCD still surprise us a lot.

Weak-coupling insight into confinement dynamics in 4d

New insights into renormalons
Working examples of large N volume independence
Remarkable Bose-Fermi correlations without supersymmetry
Emergent dimension within field theory
Gapless confining theory

Fundamental fields <= branes in an emergent bulk,
all from QFT

Lots more to understand...



Thank you for your attention!



