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Physical Motivation
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Figure 1: The QCD phase diagram, as depicted in the NSAC 2015 Long Range Plan. [1]
One of the Plan’s major goals is the discovery of the critical point. Currently, due to the
sign problem, lattice QCD calculations only give access to the region away from the critical
point denoted in yellow.

ordinary stationary phase integrals into quantum field theory path integrals. While the
initial results are promising, many improvements are still necessary to tackle more realistic
systems. In particular, the PI aims to develop a Hamiltonian Monte Carlo method tailored for
this framework which will significantly improve the Monte Carlo sampling. Other sampling
methods such as those utilizing machine learning will also be explored. In addition to finite
density systems, the PI also aims to advance the study of dynamical problems, such as
computation of transport coe�cients on the lattice, through this framework.

2) Relativistic hydrodynamics and fluctuations: One of the major discoveries of the Rel-
ativistic Heavy Ion Collider (RHIC) was that QGP behaves like a fluid and is very well
described by relativistic hydrodynamics. The PI aims to advance the hydrodynamic frame-
work by deepening our current understanding of thermal fluctuations in hydrodynamics.
In more detail, the major goals of this direction are to formulate and study the dynamics
of higher order correlation functions in a deterministic framework, expand this framework
to encompass critical fluctuations near the critical point, address the issue of “multiplica-
tive noise” within the deterministic framework, make connections with “e↵ective action”
approaches where hydrodynamics and fluctuations are formulated through an e↵ective ac-
tion, and finally, to develop tools to analyze the asymptotic nature of the all-orders gradient
expansion.

It is worth noting that even though both of these directions are motivated by QCD, the
versatile nature of the theoretical tools that will be developed and the universality of the
problems that will be addressed, means that the applicability of the results will extend far
beyond nuclear physics and is expected to have implications for a broad range of fields, from
high energy to condensed matter physics.

The proposed grant will support the PI along with two graduate students and a postdoc.
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Physical Motivation: Quantum Physics in Extreme Conditions
• QCD phase diagram 
• non-equilibrium physics at strong-coupling 
• (quantum) phase transitions in cold atom systems 
• quantum systems in extreme background fields 
• transition to hydrodynamics 
• quantum gravity

extreme systems are extremely difficult to analyze quantitatively 

• perturbation theory is of limited use 
• non-perturbative semi-classical methods: “instantons" 
• non-perturbative numerical methods: Monte Carlo  
• asymptotics

extreme = strongly-coupled; high density; ultra-fast driving; ultra-cold; 
strong fields; strong curvature; heavy ion collisions; …
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Physical Motivation: Quantum Physics in Extreme Conditions
• QCD phase diagram 
• non-equilibrium physics at strong-coupling 
• (quantum) phase transitions in cold atom systems 
• quantum systems in extreme background fields 
• transition to hydrodynamics 
• quantum gravity

technical problem: what does a quantum path integral really mean? 

extreme systems are extremely difficult to analyze quantitatively 

• perturbation theory is of limited use 
• non-perturbative semi-classical methods: “instantons" 
• non-perturbative numerical methods: Monte Carlo  
• asymptotics

“resurgence”: new form of asymptotics that unifies these approaches

extreme = strongly-coupled; high density; ultra-fast driving; ultra-cold; 
strong fields; strong curvature; heavy ion collisions; …



The Feynman Path Integral

•  stationary phase approximation: classical physics 
•  quantum perturbation theory: fluctuations about trivial saddle point 
•  other saddle points: non-perturbative physics 
•  resurgence: saddle points are related by analytic continuation, so 

perturbative and non-perturbative physics are unified
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Stokes and the Airy Function: “Stokes Phenomenon”
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•  integral cannot be evaluated without            
contour deformation 

•  “Stokes transition” at z=0 
•  fluctuation expansions about saddles 
   must be divergent, and must be related 
•  underlies optics and WKB analysis
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Analytic Continuation of Path Integrals
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since we need complex analysis and contour deformation to  
make sense of oscillatory integrals, it is natural to explore  
similar methods for (infinite dimensional) path integrals

idea: seek a computationally viable constructive definition  
of the path integral as a resurgent trans-series 



Resurgent Trans-Series 

resurgence: “new” idea in mathematics           
                                                    Dingle 1960s, Ecalle, 1980s; Stokes 1850 

perturbative series  “trans-series”
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•  unifies perturbative and non-perturbative physics 

•  trans-series is well-defined under analytic continuation 
•  expansions about different saddles are related 
•  exponentially improved asymptotics

mathematics: 

physics: 



“resurgent functions display at each of their singular points 
a behaviour closely related to their behaviour at the origin.  
Loosely speaking, these functions resurrect, or surge up - in  
a slightly different guise, as it were - at their singularities” 

                                                       J. Ecalle, 1980

Resurgent Functions 

conjecture: this structure occurs for all “natural” problems



Resurgence in Exponential Integrals

steepest descent integral through saddle point “n”:

all fluctuations beyond the Gaussian approximation:
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Resurgence in Exponential Integrals

steepest descent integral through saddle point “n”:

all fluctuations beyond the Gaussian approximation:

T (n)(~) ⇠
1X

r=0
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fluctuations about different saddles are quantitatively related
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Resurgence in Exponential Integrals

canonical example: Airy function: 2 saddle points
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Resurgence in Exponential Integrals

canonical example: Airy function: 2 saddle points

large orders of fluctuation coefficients: 

generic “large-order/low-order” resurgence relation
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Resurgence in Exponential Integrals

canonical example: Airy function: 2 saddle points

large orders of fluctuation coefficients: 

generic “large-order/low-order” resurgence relation

T+
r ⇠ (r � 1)!

(2⇡)
�
4
3

�r

 
1�

✓
4

3

◆
5

48

1

(r � 1)
+

✓
4

3

◆2 385

4608

1

(r � 1)(r � 2)
� . . .

!

amazing fact: this large-order/low-order behavior has been found in 
matrix models, QM, QFT, string theory, …

the only natural way to explain this is via analytic  
continuation of path integrals  
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Decoding a Path Integral as a Trans-Series

•  expansions along different axes must be quantitatively related 
•  expansions about different saddles must be quantitatively related
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perturbation theory works, but it is generically divergent

and there is a lot of interesting physics behind this

this is actually a very good thing !

Perturbation Theory





unstable



L. Euler, De seriebus divergentibus, Opera Omnia, I, 14, 585–617, 1760.

1X

n=0
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The Struggle to Make Sense of Divergent Series



The Struggle to Make Sense of Divergent Series

factorial: 

convergent for all x > 0

“Borel summation”
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The Struggle to Make Sense of Divergent Series

factorial: 

convergent for all x > 0

“Borel summation”
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QM Perturbation Theory: Zeeman & Stark Effects

Stark : divergent, non-alternating, asymptotic series

Zeeman : divergent, alternating, asymptotic series

physics:  magnetic field causes energy level shifts (real)

•  electric field causes energy level shifts (real)  

•  and ionization (imaginary, exponentially small)

physics: 

an ⇠ (�1)n(2n)!

an ⇠ (2n)!



QM Perturbation Theory: Zeeman & Stark Effects

Stark : divergent, non-alternating, asymptotic series

Zeeman : divergent, alternating, asymptotic series

physics:  magnetic field causes energy level shifts (real)

•  electric field causes energy level shifts (real)  

•  and ionization (imaginary, exponentially small)

physics: 

an ⇠ (�1)n(2n)!

an ⇠ (2n)!

appears nicely consistent with Borel summation approach …



but not so fast …  

the story becomes even more interesting …



Instantons and Non-Perturbative Physics

• exponentially small non-perturbative splitting due to tunneling 
• Yang-Mills theory and QCD have aspects of both systems  
• physics of optical lattices and condensates

(phase transitions) (band structure)



Instantons and Non-Perturbative Physics

• exponentially small non-perturbative splitting due to tunneling 
• Yang-Mills theory and QCD have aspects of both systems  
• physics of optical lattices and condensates

surprise: perturbation theory is non-alternating divergent ! 

but these systems are stable ???

(phase transitions) (band structure)



unphysical imaginary parts exactly cancel !

E. B. Bogomolny, 1980; J. Zinn-Justin et al, 1980

A Brilliant Resolution: “BZJ Cancelation Mechanism”

non-perturbative instanton  
& anti-instanton interaction:  

perturbation theory + Borel:

�! �i exp


�2SI

~

�
�! +i exp


�2SI

~

�

separately, each of the perturbative and non-perturbative computations  
is inconsistent; but combined as a trans-series they are consistent



unphysical imaginary parts exactly cancel !

“Resurgence”: cancelations occur to all orders; the 
trans-series expression for the energy is real & well-defined 

tip-of-the-iceberg: perturbative/non-perturbative relations 

E. B. Bogomolny, 1980; J. Zinn-Justin et al, 1980

A Brilliant Resolution: “BZJ Cancelation Mechanism”
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separately, each of the perturbative and non-perturbative computations  
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Resurgence in Quantum Mechanical Instanton Models
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Resurgence in Quantum Mechanical Instanton Models
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perturbation theory encodes everything … to all orders

fluctuations about first non-trivial saddle:



Resurgent Functions 

occurs in QM path integrals with an infinite number of saddles



Parametric Resurgence and Phase Transitions

• for a phase transition: large N ``thermodynamic limit’’

• in general, we are interested in many parameters

• multiple parameters: different limits are possible  
• “uniform” ’t Hooft limit:  
• trans-series transmutes into different form in the large N limit  
• hallmark of a phase transition

N ! 1 , ~ ! 0 : ~N = fixed

<latexit sha1_base64="KJGn0Sq4zK5cWNb5ND0JDlP1F0Y="></latexit>
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Phase Transition in the Mathieu Equation Spectrum

• N= band/gap label;   =coupling 
• phase transition: narrow bands vs. narrow gaps:  
• real instantons vs. complex instantons 
• phase transition = “instanton condensation” 
• universal phase transition
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8
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Basar, GD, 1501.05671,  
GD, Unsal, 1603.04924

https://inspirehep.net/literature/1340869
https://arxiv.org/abs/1603.04924


Resurgence in QFT: Euler-Heisenberg Effective Action 

• integral representation = Borel sum 
• analogue of Stark effect ionization and Dyson’s argument 
• particle production in E field implies series are divergent



Stokes Phase Transition in QFT 

• phase transition: tunneling vs. multi-photon “ionization” 
• phase transition: real vs. complex instantons 
• the same transition as in the Mathieu equation 
• non-trivial quantum interference effects for general E(t)

E(t) = E cos(! t)• Schwinger effect with monochromatic E field: 

• Keldysh adiabaticity parameter:  

• WKB:
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GD, Dumlu,1004.2509, 1102.2899 

https://inspirehep.net/literature/1340869
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.250402
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Resurgence in QFT: Ultra-Fast Dynamics 

• the adiabatic expansion is divergent  
• resurgence: expansion can be (Borel) resummed to a universal form 
• novel quantum interference effects: complex saddles 
• applications in AMO and CM physics and in QFT

time evolution of quantum systems with ultra-fast perturbations



Resurgence in Asymptotically Free Quantum Field Theory
1979

“infrared renormalon puzzle”: the BZJ cancelation appears to fail …



Resurgence in Quantum Field Theory

infrared renormalon puzzle of asymptotically free QFT

perturbation theory + Borel: 

non-perturbative instantons : 

UV renormalon poles

instanton/anti-instanton poles

IR renormalon poles
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Resurgence in Quantum Field Theory

infrared renormalon puzzle of asymptotically free QFT

perturbation theory + Borel: 

non-perturbative instantons : 

UV renormalon poles

instanton/anti-instanton poles

IR renormalon poles
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UV renormalon poles

instanton/anti-instanton poles

IR renormalon poles

neutral bion poles

new non-perturbative objects (“neutral bions”) lead to 
Bogomolny/Zinn-Justin style resurgent cancelation

GD/Unsal, 1210.2423
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Analytic Continuation of Path Integrals: “Lefschetz Thimbles”

Lefschetz thimble = “functional steepest descents contour”

on a thimble, the path integral becomes  
well-defined and computable !

complexified gradient flow:
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Analytic Continuation of Path Integrals: “Lefschetz Thimbles”

(2013)

• 4d relativistic Bose gas: complex scalar field theory 
• Monte Carlo on thimble softens the sign problem 
• results comparable to “worm algorithm”

Fujii et al (2013)



-4 -2 2 4

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Generalized Thimble Method

idea: flow to an approximate Lefschetz thimble

exact steepest  
descents contour

Alexandru, Basar, Bedaque et al 2016
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Generalized Thimble Method

recall that thimble structure can change as parameters change

G. Basar



Phase Transitions in QFT: 2d Thirring Model
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• chain of interacting fermions: asymptotically free 
• prototype for dense quark matter 
• sign problem at nonzero density 
• cousin of Hubbard model

Monte Carlo thimble 
computation 

(Alexandru et al, 2016)



Tempered Lefschetz Thimble Method            (Fukuma et al, 2017, 2019,…)

• probe all relevant thimbles ??? 
• sign problem vs. ergodicity 
• coupling     dynamical variable 
• parallelized tempering 
• e.g. 2d Hubbard model 
• probes multiple thimbles



Tempered Lefschetz Thimble Method            (Fukuma et al, 2017, 2019,…)

• probe all relevant thimbles ??? 
• sign problem vs. ergodicity 
• coupling     dynamical variable 
• parallelized tempering 
• e.g. 2d Hubbard model 
• probes multiple thimbles

with tempering  without tempering



Phase Transitions in 2d Gross-Neveu Model
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•  asymptotically free; dynamical mass; chiral symmetry; model for QCD 
•  large Nf  chiral symmetry breaking phase transition 
•  physics = (relativistic) Peierls dimerization instability in 1+1 dim.

saddles solve inhomogeneous gap equation 
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�(x;T, µ) ⌘ h ̄ i(x;T, µ)

chiral symmetry  
breaking condensate 

develops crystalline  
phases !

(Thies et al)
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Phase Transitions in Gross-Neveu Model

•  (divergent) Ginzburg-Landau expansion = mKdV hierarchy 
•  exact saddles are known 
•  successive orders of GL expansion “reveal” crystal phase

saddles solve inhomogeneous gap equation 

• thermodynamic potential

• all orders gives full crystal phase … but T=0 critical point is difficult

Basar, GD, Thies, 0903.1868
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Phase Transitions in Gross-Neveu Model

•  low-density expansion at T=0: (non-perturbative trans-series)

•  density expansion has non-perturbative terms: “trans-series” 

•  high-density expansion at T=0: (convergent) 

• T=0 quantum phase transition

E(⇢) ⇠ ⇡

2
⇢2

✓
1� 1

32(⇡⇢)4
+

3

8192(⇡⇢)8
� . . .

◆

E(⇢) ⇠ � 1

4⇡
+

2⇢

⇡
+
1

⇡

1X

k=1

e�k/⇢

⇢k�2
Fk�1(⇢)

µcritical =
2

⇡
$ ⇢ = 0



Resurgence and Large N Phase Transitions in Matrix Models

3rd order phase transition in Gross-Witten-Wadia unitary matrix model

phase transition in the  
``thermodynamic’’ large N limit  

Z depends on two parameters: ’t Hooft coupling t, and matrix size N 

Z(t,N) =

Z

U(N)
DU exp


N

t
tr

�
U + U †�

�

Z(t,N) = det


Ij�k

✓
N

t

◆�

j,k=1,...N
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Resurgence in Matrix Models at Large N 

“order parameter” �(t,N) ⌘ hdetUi satisfies a Painleve III equation 

t2�00 + t�0 +
N2�

t2
�
1��2

�
=

�

1��2

⇣
N2 � t2 (�0)

2
⌘

N appears only as a parameter: perfect for large N asymptotics

�(t,N) ⇠
X

n

an(t)

Nn
+ e�N S(t)

X

n

bn(t)

Nn
+ e�2N S(t)

X

n

cn(t)

Nn
+ . . .

all physical observables inherit the large N trans-series structure

large N instanton contributions: generated from ODE

e.g. a0(t) =
p
1� t
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ODE         large N weak coupling trans-series:

weak coupling large N action:
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Resurgence in Matrix Models at Large N 
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ODE         large N weak coupling trans-series:

weak coupling large N action:
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“one-instanton" fluctuations:

Resurgence in Matrix Models at Large N 
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ODE         large N weak coupling trans-series:

weak coupling large N action:
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“one-instanton" fluctuations:

resurgence: large-order growth of “perturbative coefficients”:
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Resurgence in Matrix Models at Large N 
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large N strong coupling trans-series: completely different structure

strong coupling large N action:

Resurgence in Matrix Models at Large N 
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large N strong coupling trans-series: completely different structure

strong coupling large N action:

Resurgence in Matrix Models at Large N 

S
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resurgence: large-order growth of “perturbative coefficients”:
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Large N Transmutation of Transseries 

weak-coupling trans-series changes its form across the phase  
transition into the strong-coupling phase 

universal transition: cf. Mathieu & Schwinger effect examples

immediate vicinity of t=1 is described by Painleve II equation 
(“double-scaling limit”)

physics = instanton condensation

physics = Stokes transition between real and complex instantons



Lee-Yang view of Large N Phase Transitions in Matrix Models

Lee-Yang: complex zeros of Z(t, N) pinch the real t axis at the phase  
                  transition, in the thermodynamic (large N) limit

complex parameters can indicate phase transitions 



2 dim Yang-Mills: Douglas-Kazakov Large N Phase Transition

e.g., 2d Yang-Mills on sphere

“spectral sum” for partition function: 

large N phase transition at critical area

“saddle sum” for partition function: 

dual descriptions: generalized Poisson duality

phase transition = change of saddles
phase transition = transmutation of trans-series
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(dimR)2 e�
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2d Lattice Ising Model

paradigm of phase transitions

Kramers-Wannier duality

phase transition when

expansions about T=0 and T=infinity are both convergent
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, tanh(�J) ⌘ e�2�J̃
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2d Lattice Ising Model

paradigm of phase transitions

Kramers-Wannier duality

phase transition when

expansions about T=0 and T=infinity are both convergent
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=
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resurgence: logarithmic behavior at critical T



Resurgence in 2d Lattice Ising Model

diagonal correlation functions: 

C(s, N) = tau function for Painleve VI equation               (Jimbo, Miwa) 

convergent conformal block expansions at low T and high T:  

resurgence also for convergent expansions !

C(s,N) = h�0,0 �N,N i(s)

C(s, N) has a trans-series expansion: convergent about T=0, T= 1

scaling limit: PVI     PIII as N ! 1 & T ! Tc

⌧(s) ⇠
1X

n=�1
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(McCoy et al)

(Lisovyy et al, 
2012, 2013 …)

GD, 1901.02076

https://arxiv.org/abs/1901.02076


Resurgent Extrapolation

• often, asymptotics is the ONLY thing we can do

• question: how much global information can be decoded from a 
FINITE number of perturbative coefficients ? 

• how much “perturbative” information is required to detect, and 
to probe the properties of, a phase transition ?
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Figure 1: The QCD phase diagram, as depicted in the NSAC 2015 Long Range Plan. [1]
One of the Plan’s major goals is the discovery of the critical point. Currently, due to the
sign problem, lattice QCD calculations only give access to the region away from the critical
point denoted in yellow.

ordinary stationary phase integrals into quantum field theory path integrals. While the
initial results are promising, many improvements are still necessary to tackle more realistic
systems. In particular, the PI aims to develop a Hamiltonian Monte Carlo method tailored for
this framework which will significantly improve the Monte Carlo sampling. Other sampling
methods such as those utilizing machine learning will also be explored. In addition to finite
density systems, the PI also aims to advance the study of dynamical problems, such as
computation of transport coe�cients on the lattice, through this framework.

2) Relativistic hydrodynamics and fluctuations: One of the major discoveries of the Rel-
ativistic Heavy Ion Collider (RHIC) was that QGP behaves like a fluid and is very well
described by relativistic hydrodynamics. The PI aims to advance the hydrodynamic frame-
work by deepening our current understanding of thermal fluctuations in hydrodynamics.
In more detail, the major goals of this direction are to formulate and study the dynamics
of higher order correlation functions in a deterministic framework, expand this framework
to encompass critical fluctuations near the critical point, address the issue of “multiplica-
tive noise” within the deterministic framework, make connections with “e↵ective action”
approaches where hydrodynamics and fluctuations are formulated through an e↵ective ac-
tion, and finally, to develop tools to analyze the asymptotic nature of the all-orders gradient
expansion.

It is worth noting that even though both of these directions are motivated by QCD, the
versatile nature of the theoretical tools that will be developed and the universality of the
problems that will be addressed, means that the applicability of the results will extend far
beyond nuclear physics and is expected to have implications for a broad range of fields, from
high energy to condensed matter physics.

The proposed grant will support the PI along with two graduate students and a postdoc.

3

Costin, GD: 1904.11593, 2003.07451 
2009.01962

Zach Harris poster: Wed/Thurs

https://arxiv.org/abs/1904.11593
https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2009.01962


Resurgent Extrapolation

• case-study: Painleve I equation y

00(x) = 6 y2(x)� x

����-������

����-������

����-������

������

������

Re[x]

Im[x]

• Painleve I equation has 5 sectors in the complex x plane, separated 
by phase transitions 

• tritronquée solution: poles only in shaded region
• suppose we expand about x=+infty to finite order N: how 

much do these coefficients “know” about the other sectors?



Resurgent Extrapolation

• extrapolate across Stokes transitions, even into the tritronquée 
pole region

• resurgent extrapolation can decode global behavior from  
  surprisingly little input data from some other regime

• Pade-Borel + conformal or uniformizing maps: extreme precision 
• 10 terms at x=+infty encode 23 digits of precision at x=0
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Costin, GD: 1904.11593,  
2009.01962

https://arxiv.org/abs/1904.11593
https://arxiv.org/abs/2009.01962


Resurgent Extrapolation

• resurgent extrapolation can decode global behavior 
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• transmutation of the trans-series:

• near x ! +1 y(x) ⇠ �
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• into the pole region: 4⇡

5
 arg(x)  6⇡

5

• this phase transition is encoded in (few) fluctuation coeffs at

• along Stokes/anti-Stokes lines: exponentials 

x = +1
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• resurgence: new summation & extrapolation methods



Conclusions

•  “resurgence” is a new and improved form of asymptotics 

•  deep connections between perturbative and non-perturbative physics 

•  recent applications to differential eqs, QM, QFT, string theory, … 

•  2-parameter trans-series can describe phase transitions 

•  outlook: new theoretical approach to quantum systems in extreme 
conditions  

•  outlook: computational definition of real-time path integrals 

•  outlook: computational access to strongly-coupled systems, phase 
transitions, particle production, and far-from-equilibrium physics


