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Introduction

Introduction

There are two resurgence in physics.

1. P-NP relation (for transseries)

Z(~) =

∫
periodic

Dxe−
S[x]
~ (1)

=
∑
n

an~n + e−
S1
~
∑
n

bn~n + e−
S2
~
∑
n

cn~n + ... (2)

The series is not converge, but asymptotic. The Borel ambiguity

derived from the perturbative series has nonperturbative

information.

(S+ − S−)

[∑
n

an~n
]
∝ ±ie−

S1
~ (3)
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2. Exact WKB method (for differential equation)(
−~2

2

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) . (4)

ψ(x) =
∑
n

ψn(x)~n (5)

Then ψ(x) is asymptotic series. If we consider its Borel summation

and its analytic continuation,

ψ+
I (x)→ ψ+

II (x) + ψ−II (x) (6)

Riemann-Hilbert problem of the differential equation.
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How are they related each other?
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fundamental problems

Other fundamental problems:

1. The relation among several quantization methods:

• Bohr-Sommerfeld quantization

• Schrödinger eq.

• path integral

• Gutzwiller trace formula

e.g. Can we derive path integral from Bohr-Sommerfeld?

2. How to determine the intersection number of Lefschetz thimble

(relevant saddle points)
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The all questions are solved.
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Exact WKB
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Exact WKB

In WKB analysis, we consider the ansatz given by(
−~2

2

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) . (7)

ψ(x, ~) = e
∫ x S(x,η)dx , (8)

S(x, ~) = ~−1S−1(x) + S0(x) + ~S1(x) + ~2S2(x) + ... (9)

= Sodd + Seven (10)

Then Schrödinger eq. becomes Riccati eq.

S(x)2 +
∂S

∂x
= ~−2Q(x) , (11)

where Q(x) = S−1 =
√

2(V (x)− E). Also we can show

Seven = −1

2

∂

∂x
logSodd . (12)
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Therefore the WKB wave function is expressed as

ψ±a (x) = e
∫ x S±dx =

1√
Sodd

e±
∫ x
a Sodddx (13)

At the leading order, this expression becomes usual WKB

approximation:

ψ±a (x) ∼ 1

Q(x)1/4
e±

1
~
∫ x
a

√
Q(x)dx , (14)

Now, we take Borel summation of ψ±a (x).
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The posistion of Borel singularity depends on x.

(ψ(x) =
∑
an(x)~n)

→ Stokes curve tells where the

Stokes phenomena happens.
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Stokes curve is defined as

Im
1

~

∫ x

a

√
Q(x)dx = 0 (15)

(16)

(Q(a) = 2(V (x)− E)
∣∣
x=a

= 0 i.e. turning point)

�

�

+
α

I

II
x

Figure 1: Airy: V (x) = x, across anti-clockwisely

ψ+
a,I = ψ+

a,II + iψ−a,II

ψ−a,I = ψ−a,II 12 / 55



When a wavefunction crosses a Stokes curve, its Stokes

phenomena can be expressed as(
ψ+
a,I

ψ−a,I

)
= M

(
ψ+
a,II

ψ−a,II

)
, (17)

where the the matrix M is given by

M =



1 i

0 1

 =: M+ for anti-clockwisely, +1 −i
0 1

 =: M−1
+ for clockwisely, +1 0

i 1

 =: M− for anti-clockwisely, − 1 0

−i 1

 =: M−1
− for clockwisely, −

(18)
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If one considers two wave functions normalized at the different

turning points: a1, a2. They are related by

ψ±a1
(x) = e

±
∫ a2
a1

Soddψ±a2
(x) (19)

Therefore(
ψ+
a1

(x)

ψ−a1
(x)

)
= Na1a2

(
ψ+
a2

(x)

ψ−a2
(x)

)
, Na1a2 =

(
e

+
∫ a2
a1

Sodd 0

0 e
−
∫ a2
a1

Sodd

)
.

(20)

N is called Voros multiplier. Actually we can derive the

eigenvalues and also the partition function with these tools without

solving Schrödinger eq.
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Example: Harmonic Oscillator
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Let the potential as V (x) = 1
2ω

2x2. Then its Stokes curve looks as

follows (E > 0):

�

+

a1

+

�a2

++

I II III

x

Figure 2:

where a1 = −
√

2E
ω , a2 =

√
2E
ω are turning points. The blue line is

the path of analytic continuation.
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First, (
ψ+
a1,I

(x)

ψ−a1,I
(x)

)
= M+

(
ψ+
a1,II

(x)

ψ−a1,II
(x)

)
(21)

Second, (
ψ+
a1,II

(x)

ψ−a1,II
(x)

)
= Na1a2

(
ψ+
a2,II

(x)

ψ−a2,II
(x)

)
(22)

Then (
ψ+
a2,II

(x)

ψ−a2,II
(x)

)
= M+

(
ψ+
a2,III

(x)

ψ−a2,III
(x)

)
(23)

After all (A = e
∮
A Sodd = e

2
∫ a2
a1

Sodd)(
ψ+
a1,I

(x)

ψ−a1,I
(x)

)
= M+Na1a2M+Na2a1

(
ψ+
a1,III

(x)

ψ−a1,III
(x)

)
(24)

=

(
ψ+
a1,III

(x) + i(1 +A)ψ−a1,III
(x)

ψ−a1,III
(x)

)
(25)
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therefore we obtain

D = 1 +A = 0 (26)

This is equivalent to∮
A
Sodd = n+

1

2
with n ∈ Z (27)

In the case of harmonic oscillator, we can show∮
A
Sodd =

1

~

∮
A

√
2(V (x)− E)dx = −2πi

E

~ω
(28)

(The higher orders of Sodd don’t contribute to this integral)

Therefore D(E) = 0 gives

E = ~ω
(
n+

1

2

)
(29)

(30)

the condition of Stokes curve: E > 0 determines n = 0, 1, 2...
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Resolvent method

- bridge exact WKB to the partition function and Gutzwiller
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Resolvent method

We can regard the quantization condition derived from exact WKB:

D(E) = 0 as the Fredholm determinant: D = det
(
Ĥ − E

)
.

For the trace of resolvent: G(E) = tr 1
H−E , it can be expressed as

− ∂
∂E logD = G(E). Also

G(E) =

∫ ∞
0

Z(β)eβEdβ (31)

Z(β) =
1

2πi

∫ ε+i∞

ε−i∞
G(E)e−βEdE , (32)

where Z(β) = tr e−βH
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Indeed,

D = 1 +A = 1 + e−2πi E~ω (33)

= e−πi
E
~ω 2 sin

(
π

(
E

~ω
+

1

2

))
(34)

= e−πi
E
~ω

2π

Γ(1
2 + E

~ω )Γ(1
2 − E

~ω )
(35)

G(E) = − ∂

∂E
log(1 +A) (36)

= − ∂

∂E
log

(
e−πi

E
~ω

2π

Γ(1
2 + E

~ω )Γ(1
2 − E

~ω )

)
(37)
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The partition function is

Z =
1

2πi

∫ ε+i∞

ε−i∞
− ∂

∂E
log

(
e−πi

E
~ω

2π

Γ(1
2 + E

~ω )Γ(1
2 − E

~ω )

)
e−βEdE

(38)

=

∞∑
n=0

e−β~ω(n+ 1
2) (39)

Remark: We don’t have to solve the Schrödinger eq. or path

integral to derive the partition function.

1

2
�1

2
�3

2

3

2
……

✏

C

Figure 3: C is the integration contour
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Also,

G(E) = − ∂

∂E
log(1 +A) =

− ∂
∂EA

1 +A
(40)

=
i

~

∞∑
n=1

Te
in
~
∮
A pdx(−1)n, (41)

(where T is the period of harmonic oscillator)

This is actually the Gutzwiller trace formula of harmonic oscillator.
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Gutzwiller trace formula
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Gutzwiller trace formula

Z(T ) = tr e−iHT (42)

=

∫
periodic

Dx eiS (43)

G(E) =

∫ ∞
0

Z(T )e(iE−ε)TdT = −i tr
1

H − E (44)

therefore

G(E) = −i tr
1

H − E =

∫ ∞
0

dT

∫
periodic

Dx eiS+iET (45)

=

∫ ∞
0

dT

∫
periodic

Dx eiΓ, (46)
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where Γ = S + ET . Action, S can be written as

S =

∫
pẋdt−

∫ T

Hdt (47)

=

∮
pdx−

∫ T

Hdt (48)

Evaluate T integral by stationary phase method

dΓ

dT
=

dS

dT
+ E (49)

Using d
dT

∮
pdx = 0,

dΓ

dT
=

dS

dT
+ E = −H + E (50)
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The leading contributions are periodic classical solutions whose

energy is E. There are n-times periodic orbit too:
∮
pdx→ n

∮
pdx.

Γ = S + ET =

(
n

∮
pdx− ET

)
+ ET = n

∮
pdx (n = 1, 2, 3...)

(51)

Finally,

G(E) =
∑
p.p.o.

∞∑
n=1

ein
∮
p.p.o. pdx (52)

p.p.o. stands for prime periodic orbit, which is a topologically

distinguishable orbit among the countless periodic orbits.

If we consider sub-leading term of stationary phase approximation,

G(E) ' i
∑
p.p.o.

∞∑
n=1

T (E)ein
∮
p.p.o. pdx(−1)n

(
det

∣∣∣∣ δ2S

δxiδxj

∣∣∣∣)−1/2

(53)

where i(−1)n is the Maslov index.
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Maslov index

Maslov index is the index determined by the number of negative

eigenvalue of M , where

M =
δ2S

δxδx

∣∣∣∣
x=xcl

= − d2

dt2
− V ′′(xcl) . (54)

√
detM =

√
|detM |eiαπ, α =

ν

2
. (55)

Here, α is called the Maslov index. (ν is the number of negative

eigenvalues of M) The determinant of the n-cycle is given by

√
detM = −i

√
|detM |(−1)n . (56)

Because the operator M has 2n− 1 negative eigenvalues for

n-cycle orbit. (and we call this (−1)n as Maslov index from here)
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Proof

Consider classical EoM:

−d2xcl
dt2

− dV

dxcl
= 0 . (57)

Take t differential for this equation. Then we get(
− d2

dt2
− V ′′(xcl)

)
dxcl
dt

= 0 . (58)

This expression is nothing but an eigenvalue equation for the zero

eigenvalue of the fluctuation operator, Mψ̃0(t) = 0, and the

eigenfunction is proportional to ψ̃0(t) = dxcl
dt .

29 / 55



Next, let us consider a periodic classical solution xcl. When it is a

one-cycle solution, the derivative dxcl
dt typically has a behavior

depicted in Fig. 4.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 4: The appearance of the derivative dxcl
dt for 1-cycle.

The operator M is a Schrödinger-type operator, thus this is the

first excited state so there is one negative eigenvalue.

Similary, 2-cycle is the third excited state so there are three

negative eigenvalues...

→ M has 2n− 1 negative eigenvalues for n-cycle orbit.
30 / 55



Harmonic oscillator in Gutzwiller’s form

There is only one type of p.p.o. with constant T (E) and

| det δ2S
δxiδxj

|, We then obtain

G(E) ∝
∞∑
n=1

ein
∮
pdx(−1)n =

ei
∮
pdx

1 + ei
∮
pdx

. (59)

This is same to the G(E) obtained from exact WKB, and the

poles of G(E) are given by∮
pdx = 2π

(
n+

1

2

)
. (60)

However, the way to determine p.p.o. and how to sum them up

were not known in general cases.

→ As we will show, you can identify them exactly!
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Double well potential
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Double well potential

�

+

a1 +

�

a4

+

+

a2 a3

+

�

�

+

� �

x

A B C

�

+

a1 +

�

a4

+

+

a2 a3

+

�

+

� ��

x

A B C

Figure 5: left: Im ~ > 0, right: Im ~ < 0

When Im ~ > 0

D+ = (1 +A)(1 + C) +AB = 0 . (61)

When Im ~ < 0

D− = (1 +A)(1 + C) + CB = 0 . (62)

A = e
∮
A Sodd , B = e

∮
B Sodd , C = e

∮
C Sodd = A−1. B ∝ e−S~
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DDP(Delabaere-Dillinger-Pham) formula

In our case, (Please see our paper for the generic case)

S+[A] = S−[A](1 + S[B])−1, (63)

S+[B] = S−[B] =: S[B], (64)

S+[C] = S−[C](1 + S[B])+1, (65)

Using this formula, we can show

S+[D+] = S−[D−] (66)

i.e. both are equivalent when we take Borel summation.
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Analyse the exact quantization

condition
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let us consider the asymptotic form of A

A→ e
−2πi E

~ωA(E,~) . (67)

This ωA(E, ~) is an asymptotic expansion in ~.

ωA(E, ~)2 =

∞∑
n=0

cn(E)~n (68)

lim
E→0

c0(E) = V ′′(xvac) , (69)

Then D± becomes (E = ~ωA(1
2 + δ))

4 sin2(πδ) = e−2πiδB Im ~ > 0 ,

4 sin2(πδ) = e2πiδB Im ~ < 0 . (70)

Or equivalently,

1

Γ(−δ) = ±
√
B

2π
e−πiδΓ(1 + δ) Im ~ > 0 ,

1

Γ(−δ) = ±
√
B

2π
eπiδΓ(1 + δ) Im ~ < 0 . (71)
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ZINN-Justin’s result from the path integral is

1

Γ(−x)
= ±e

−Sinst

2π
e−πix

(
~
2

)−x− 1
2√

2π Im ~ < 0 .

1

Γ(−x)
= ±e

−Sinst

2π
eπix

(
~
2

)−x− 1
2√

2π Im ~ < 0 ., (72)

where x = E − 1
2 . Considering that

(~
2

)−δ− 1
2
√

2π in (72) is the

contribution from quantum fluctuations, this part is included in B

and ωA in (71). The extra Gamma function Γ(1 + δ) is, essentially

coming from the negative energy part.

(Note: Using degenerate Weber-type exact WKB, we can produce

this result completely)
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Double well in Gutzwiller’s form

(D+: Im ~ > 0, D−: Im ~ < 0)

D± = (1 +A)(1 + C) +AB = (1 +A)(1 +A−1)(1 + B
(1+A∓)2 )

Using G(E) = − ∂
∂E logD,

G(E) = Gp(E) +Gnp(E) (73)

(74)

Gp(E) = − ∂

∂E
log(1 +A)− ∂

∂E
log

(
1 +

1

A

)
(75)

Gnp(E) = − ∂

∂E
log

(
1 +

B

(1 +A∓)2

)
(76)

= − ∂

∂E
log

(
1 +

B

(D±A)2

)
(77)
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The derivative term ∂
∂EA produces the “period”

∂

∂E
A =

∂

∂E
e
∮
A Sodd =

(
∂

∂E

∮
A
Sodd

)
e
∮
A Sodd

=

(∮
A

1

~
−1√

2(V − E)
+O(~)

)
e
∮
A Sodd ≡ −1

~
iTAA . (78)

and similarly,

∂

∂E
B = −1

~
iTBB . (79)

TA is real, and TB is pure imaginary.
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Using these quantities, G(E) can be expressed as

G(E) = Gp +Gnp (80)

Gp(E) = i
1

~
TA

∞∑
n=1

(−1)nAn + i
1

~
TA

∞∑
n=1

(−1)nA−n, (81)

Gnp(E) = − ∂

∂E

(
(D±A)−2B

) ∞∑
n=1

(−1)n((D±A)−2B)n, (82)

(D±)−2
A B =

B
(∑∞

k=1(−1)kA−k
)(∑∞

l=1(−1)lA−l
)

(Im ~ > 0)

B
(∑∞

k=1(−1)kAk
)(∑∞

l=1(−1)lAl
)

(Im ~ < 0)

(83)

∂

∂E

(
(D±A)−2B

)
= −i1

~

∞∑
n,m=1

(−1)(n+m)
(
TB ∓ (n+m)TA

)
B(A∓)n+m,

(84)

This is exactly the form of Gutzwiller trace formula and the factor

(−1)n is regarded as the Maslov index.
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V(x)

x

E
B AA

Figure 6:

Gnp ∼
∞∑
n=1

(−1)n(D−2
A B)n (85)

D−2
A B =

B
(∑∞

k=1(−1)kA−k
)(∑∞

l=1(−1)lA−l
)

(Im ~ > 0)

B
(∑∞

k=1(−1)kAk
)(∑∞

l=1(−1)lAl
)

(Im ~ < 0)

(86)
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Partition function and QMI
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Partition function

G(E) = Gp(E) +Gnp(E) (87)

(88)

Gp(E) = − ∂

∂E
log(1 +A)− ∂

∂E
log

(
1 +

1

A

)
(89)

Gnp(E) = − ∂

∂E
log

(
1 +

B

(D±A)2

)
(90)

Z(β) =
1

2πi

∫ ε+i∞

ε−i∞
G(E)e−βEdE (91)
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Z = Zp(β) + Znp(β) (92)

Znp(β) =
1

2πi

∫ ε+i∞

ε−i∞

[
− ∂

∂E
log

(
1 +

B

(D±A)2

)]
e−βEdE (93)

= −β 1

2πi

∫ ε+i∞

ε−i∞
log

(
1 +

B

(D±A)2

)
e−βEdE (94)

= β
1

2πi

∫ ε+i∞

ε−i∞

∞∑
n=1

1

n

(
B

(D±A)2

)n
(−1)ne−βEdE (95)

B ∝ e−S~ , so this summation is indeed multi-bion contribution.

Using DDP formula, we can say

S+[Z+] = S−[Z−] (96)

i.e. we can identify the exact form of resurgent structure of the

partition function!
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QMI(quasi-moduli integral) form
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QMI(quasi-moduli integral) form

Using A→ e
−2πi E

~ωA(E,~) , By defining s ≡ E/(~ωA)− 1/2,

Znp(β) = (97)

β
1

2πi

∫ ε+i∞

ε−i∞

∞∑
n=1

1

n

(
BΓ(−s)2 1

2π
e∓2πis

)n
e−β

~ωA
2 ~ωAe−sβds .

(98)

Here, the partition function obtained by calculating the path
integral is as follows:

Znp

Z0
= (99)

β
1

2πi

∫ ε+i∞

ε−i∞

∞∑
n=1

1

n

(
e−Sbion

(
detMI

detM0

)−1
Sinst

2π
Γ(−s)2

(
~
2

)−2s

e∓2πis

)n
e−sβds .

(100)
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New perspective of QMI

QMIn =
1

n

2n∏
i=1

(∫ ∞
0

dτie
−Vi(τi)

)
δ

(
2n∑
k=1

τk − β
)

=
1

2πin

∫ i∞

−i∞
dse−sβ

(
e±iπ(−s)

(
~
2

)−s
Γ(−s)

)2n

(101)

From the path integral,

D(E) =
1

Γ
(

1
2
− E

)
Γ
(

1
2
− E

)(1 −Be±iπ(1−2E)

(
~
2

)(1−2E)

Γ

(
1

2
− E

)
Γ

(
1

2
− E

))
= 0

(102)

The first 1
Γ( 1

2
−E)Γ( 1

2
−E)

are from two vacua and the latter ones

are from QMI. This miracle is easily explained by this Gutzwiller’s

representation. Essentially both have the same origin, the infinite

number of A cycles, D−1
A = 1

1+A =
∑∞

n (−1)nAn ∼ Γ(1
2 − E).
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The intersection number of

Lefschetz thimble
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The intersection number of Lefschetz thimble

First, we write down the partition function formally as a sum over

saddle points

Z(β) = tr e−βĤ =

∫
Dx e−

S[x]
~

= n0 S
[
e−

S[x0]
~
∑
n

an~n
]

+ n1 S
[
e−

S[x1]
~
∑
n

bn~n
]

+ ...

=
∑
σ

nσ

∫
Jσ
Dx e−

S[x]
~ =

∑
σ

nσ Zσ(β) , (103)

where S[·] denotes the Borel summation of series expansions and

xσ stands for saddle points.
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tr
1

Ĥ − E
= G(E) =

∫ ∞
0

Z(β)eβE dβ

=
∑
σ

nσ

∫ ∞
0

Zσ(β)eβE dβ

=
∑
σ

nσGσ(E) . (104)

The trace of resolvent G(E) can be connected to the Fredholm

determinant D(E) = det
(
Ĥ − E

)
via the relation

− ∂
∂E logD = G(E). Then, we have

D(E) =
∏
σ

Dnσ
σ (E) , (105)

where Dσ(E) stands for the Fredholm determinant for each

thimble.
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Now, the quantization condition given by Eq. (61) can be rewritten

as

D = (1 +A)(1 +A−1)

∞∏
n=1

D(−1)n

n (106)

Dn = e
− 1
n

(
B

D2
A

)n
(107)

Zn =
1

2πi

∫ i∞

−i∞

[
∂

∂E

1

n

(
B

D2
A

)n]
e−βEdE

=
β

2πi

∫ ε+i∞

ε−i∞

1

n

(
Γ(−s)2 B

2π
e∓2πi(1/2+s)

)n
e−β(~ωA(1/2+s))~ωAds .

(108)

→ The Maslov index is regarded as the intersection number of

Lefschetz thimble!

51 / 55



Summary

• We show how the two resurgence are related each other, and

the Stokes phenomena of partition function (or energy)

corresponds to the change of the “topology” of the Stoke

curve.

• We show the cancellation of Borel ambiguity of partition

function without approximation.

• We show the relation between the Maslov index and the

intersection number of Lefschetz thimble and how to

determine it.

• Using Exact WKB method, we show the exact relationship

among Schrödinger eq., Bohr-Sommerfeld, Gutzwiller and

path integral.

• (Generalizing to N-ple well potential, including higher genus

systems.)
52 / 55



Discussion

• Exact WKB on S1 with θ term → succeed! we can see the

degenerate at θ = π too

• phase transition and complex turning point

• Degenerate Weber vs Airy-type exact WKB
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Appendix: triple well

D± =(1 +A1)(1 +A2)(1 +A−1
1 )

·
∞∏
n=1

exp

[
− 1

n

{
B

(
1

D+
A1
D±A2

+
1

D−A1
D±A2

)
+

B2

D+
A1
D−A1

D±A2

}n](−1)n

.

(109)

V(x)

x

BA1

B2

A2 A1B

Figure 7:
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Z = Zp + Znp , (110)

with

Zp =
1

2πi

∫ ε+i∞
ε−i∞

[
−

∂

∂E
log(1 + A1)

]
e
−βE

dE

+
1

2πi

∫ ε+i∞
ε−i∞

[
−

∂

∂E
log(1 + A2)

]
e
−βE

dE +
1

2πi

∫ ε+i∞
ε−i∞

[
−

∂

∂E
log
(
1 + A

−1
1

)]
e
−βE

dE ,

(111)

Znp =
β

2πi

∫ ε+i∞
ε−i∞

∞∑
n=1

1

n
(−1)

n

B
 1

D+
A1
D±
A2

+
1

D−
A1
D±
A2

 +
B2

D+
A1
D−
A1
D±
A2

n

'
β

2πi

∫ ε+i∞
ε−i∞

∞∑
n=1

1

n
(−1)

n

e±πi E
~ωA2

{
2 cos

(
E

~ωA1

)
B

2π
Γ

(
1

2
−

E

~ωA1

)
Γ

(
1

2
−

E

~ωA2

)

+
B2

(2π)3/2
Γ

(
1

2
−

E

~ωA1

)2

Γ

(
1

2
−

E

~ωA2

)}]n
e
−βE

dE . (112)
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