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Introduction

Introduction

There are two resurgence in physics.

1. P-NP relation (for transseries)
Z(k) = / Dae % (1)
periodic

:Zanhn—&—e_% anhn—ke_sr% chh”—i—... (2)

The series is not converge, but asymptotic. The Borel ambiguity

derived from the perturbative series has nonperturbative

information.
51
(S+ — x tie” B (3)

S|t
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2. Exact WKB method (for differential equation)

2 2
(-5 52 + V(@) )9() = Bv(a). *)
(@) =) wn(2)h" (5)

Then 9 (z) is asymptotic series. If we consider its Borel summation
and its analytic continuation,

Yi (@) = ¥y (@) + ¥y (2) (6)

Riemann-Hilbert problem of the differential equation.
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How are they related each other?
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fundamental problems

Other fundamental problems:
1. The relation among several quantization methods:

e Bohr-Sommerfeld quantization
e Schrodinger eq.
e path integral

o Gutzwiller trace formula
e.g. Can we derive path integral from Bohr-Sommerfeld?

2. How to determine the intersection number of Lefschetz thimble

(relevant saddle points)
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The all questions are solved.
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Exact WKB
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Exact WKB

In WKB analysis, we consider the ansatz given by

h? d?
<_2dx2 + V(@)W@ = Ey(z). (7)
Y(z, k) = el " Swmde (8)
S(xz,h) = K 1S_q(x) + So(x) + hS1(z) + H2Sa(z) + ... (9)
= Sodd + Seven (10)
Then Schrodinger eq. becomes Riccati eq.
oS

S >2+{7—h Q) (11)

where Q(z) = S_1 = /2 . Also we can show

10

Seven = 567 IOg Sodd (12)
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Therefore the WKB wave function is expressed as
3 1 ]
w(:ll:(x) — ef Sidfﬁ = SA ddeifa Sgdddct (13)
O

At the leading order, this expression becomes usual WKB
approximation:

vE@) ~ 5 (::)1 LI Qde (14)

Now, we take Borel summation of ¥ (x).
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The posistion of Borel singularity depends on z.

(Y(z) = X an(z)h™)
— Stokes curve tells where the

Stokes phenomena happens.
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Stokes curve is defined as

1 x
Imh/a VQ(z)dxr =0 (15)

(16)
(Qa) =2(V(x) — E) ‘x:a =0 i.e. turning point)
- x

Figure 1: Airy: V(x) = «, across anti-clockwisely

¥ ot
Vo1 = Yo + o1
wa_,l = 77/);,11
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When a wavefunction crosses a Stokes curve, its Stokes
phenomena can be expressed as

+ ¢+
o) = p( Vet ), (17)
¢a,1 wa,II
where the the matrix M is given by

i
=: M, for anti-clockwisely, +

(e R
—

M;l for clockwisely, +

1 @> B
o 1)
M = (18)

1 0
) =: M_ for anti-clockwisely, —
1

' =: M_" for clockwisely, —
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If one considers two wave functions normalized at the different
turning points: a1, as. They are related by

YE(z) = e Jat S"ddqj;;é (z) (19)
Therefore
Y, () P (x) ot Jaf Sodd 0
: = Nasa, - ) Naya, = _ rag .
<w‘11 (m)> <¢a2 ($)> ( 0 e fa1 Sodd
(20)

N is called Voros multiplier. Actually we can derive the
eigenvalues and also the partition function with these tools without
solving Schrodinger eq.
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Example: Harmonic Oscillator
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Let the potential as V(z) = $w?z?®. Then its Stokes curve looks as
follows (E > 0):

I I I11
+ +
Figure 2:
where a1 = @, ag = F are turning points. The blue line is

the path of analytic contlnuat|on.
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First,
Second,

Then

After all

(

alﬂx ag]Ix
a1a2
alll‘r agH‘r
azﬂm a2]]11’
ag]Ix ag]]Ix
( —efAde—ezf Sodd

Yo, 1(2)
Ve 1(2)

) M+Na1a2M+Na2a1 < “ ]]1(37;>

d

alIH(x

wal m(® z) +i(1+ A)%l ]]1(33)
Yy m(@)

)

(21)

(22)

(23)

(24)

(25)
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therefore we obtain
D=1+A4=0 (26)
This is equivalent to
1
%Sodd:n—i— with n € Z (27)
A 2
In the case of harmonic oscillator, we can show

1 F
%4 St = 7 7{4 VAV(@) ~ Byde = i (28)

(The higher orders of S,44 don’t contribute to this integral)
Therefore D(E) = 0 gives

E = hw (n + ;) (29)
(30)

the condition of Stokes curve: E > 0 determines n =0, 1,2...
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Resolvent method

- bridge exact WKB to the partition function and Gutzwiller
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Resolvent method

We can regard the quantization condition derived from exact WKB:
D(FE) = 0 as the Fredholm determinant: D = det (f] - E)

For the trace of resolvent: G(E) = tr /-5

, it can be expressed as
—8% log D = G(E). Also

G(E) = [ 2()e"ap (31)
2(6)= 5 / " a@)erra, (32)

where Z(f) = tre #H
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Indeed,

D=1+A=1+e¢ %5 (33)
, E 1

— ¢ ™5 2sin <7T<hw + 2)) (34)

_ i 2m (35)

G(E) = — Tog(1 + A) (36)

B 2m
=——log|e ™ (37)
),
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The partition function is

1 Sl ) 2w
Z=_— ——log| e ™ e "PdE
2t Jewins 9P g( TG +ENG- 5))
(38)
= ¢~ Bhw(n+3) (39)
n=0

Remark: We don’t have to solve the Schrodinger eq. or path
integral to derive the partition function.

Figure 3: C is the integration contour
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Also,

0 -24
G(E) = - aE log(1+ 4) = 7255 (40)
_ i in dx n
—hnle” fapds (-1, (41)

(where T is the period of harmonic oscillator)

This is actually the Gutzwiller trace formula of harmonic oscillator.
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Gutzwiller trace formula
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Gutzwiller trace formula

Z(T) = tre 7T (42)

= / Dz e (43)
periodic

G(E) = /0 Z(T)elP=TaT = —itr

therefore

G(E) = —itr

1 / o0 o
= [ dr Dy SHET 45
H-F 0 eriodic ( )

J
/ dT / (46)
0 pemodzc



where I' = S + ET'. Action, S can be written as

T
S:/p:bdt—/ Hdt
T
zjépdx—/ Hdt

Evaluate 7" integral by stationary phase method

dr ds
dT_dT+E
Using & ¢ pdz = 0,
dr  ds

(47)

(48)

(49)
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The leading contributions are periodic classical solutions whose
energy is E. There are n-times periodic orbit too: ¢ pdz — n ¢ pdx.

'=S+ET = <n7{pda:—ET> +ET:nfpda: (n=1,2,3...)
(51)

Finally,

G(E) = Z i " $p.p.o. PAT (52)

p.p.o.n=1
p.p.o. stands for prime periodic orbit, which is a topologically
distinguishable orbit among the countless periodic orbits.

If we consider sub-leading term of stationary phase approximation,

00 n g p 528 —1/2
~ 7 M Ppp.o. POT(__ 1\
O(E)~i Y Y T(E) oo P 1) (det mj)
p.p.o.n=1
(53)

where i(—1)" is the Maslov index.
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Maslov index

Maslov index is the index determined by the number of negative
eigenvalue of M, where
d2

=92 V" (za) - (54)

B 528
 dxzdx

T=Tc]

Vdet M = +/| det M|etT, a= % (55)

Here, « is called the Maslov index. (v is the number of negative
eigenvalues of M) The determinant of the n-cycle is given by

Vdet M = —iy/|det M|(—1)". (56)

Because the operator M has 2n — 1 negative eigenvalues for
n-cycle orbit. (and we call this (—1)" as Maslov index from here)
28 /55



Consider classical EoM:

- d’zy AV

-2 . 7
de#? dxy 0 (57)

Take t differential for this equation. Then we get

(dz - V"(xd)> 2 _ g, (58)

This expression is nothing but an eigenvalue equation for the zero

eigenvalue of the fluctuation operator, M4)y(t) = 0, and the

eigenfunction is proportional to qﬁg(t) = dé‘gl.
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Next, let us consider a periodic classical solution x.. When it is a

one-cycle solution, the derivative dxd

typically has a behavior
depicted in Fig. 4.

Figure 4: The appearance of the derivative d"‘d for 1-cycle.

The operator M is a Schrodinger-type operator, thus this is the
first excited state so there is one negative eigenvalue.

Similary, 2-cycle is the third excited state so there are three
negative eigenvalues...

— M has 2n — 1 negative eigenvalues for n-cycle orbit.
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Harmonic oscillator in Gutzwiller’s form

There is only one type of p.p.o. with constant T'(F) and
8258 -
| det 52057 |, We then obtain

G(E) = in § pdx 1)"— eiﬁpdzp 59

This is same to the G(E) obtained from exact WKB, and the
poles of G(E) are given by

jfpdx _on <n + ;) | (60)

However, the way to determine p.p.o. and how to sum them up
were not known in general cases.

— As we will show, you can identify them exactly!
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Double well potential
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Double well potential

Figure 5: left: ImA > 0, right: ImA < 0

When Im A > 0

Dt =(1+A)(1+C)+AB=0. (61)

When Im A < 0

D =(1+A)(1+C)+CB=0. (62)
A = e$aS0ii| B = efpSodd O = efoSodd = A~ B o
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DDP(Delabaere-Dillinger-Pham) formula

In our case, (Please see our paper for the generic case)

S4[4] = S_[A]1 + S[B) ™,
5.[B] = S_[B] =: SB],
84[0] = S_[C1 + S[B)*,

Using this formula, we can show
Si[DF)=S-[D7]

i.e. both are equivalent when we take Borel summation.
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Analyse the exact quantization
condition
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let us consider the asymptotic form of A
: E
A e TR ED | (67)

This wa(E, ) is an asymptotic expansion in f.

wa(E,h)? =" cn(E)A" (68)
n=0
}ljiglo co(E) = V" (2yae) , (69)

Then D* becomes (E = hwa(3 + 6))
4sin®(nd) = e B Imh >0,
4sin’(16) = 2B Imi < 0. (70)

Or equivalently,

1 VB

=+ —TR] I
) 5 € (1+49) mh >0,
1 VB s
= T (1 I . 1
) 5 ¢ (1+9) mh <0 (71)
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ZINN-Justin's result from the path integral is

1
1 e_Sinst i h _x_i
=4 —miz (1 V2 Im# < 0.
T(—x) on © (2) " mis

1
1 e_Sinst . h —I—3
= a5 el — 2 Imh<0. 72
(=) o€ (2> V2r mh<0. (72)

where z = E — 1. Considering that (%)_6_%\/ﬂ in (72) is the
contribution from quantum fluctuations, this part is included in B
and wy in (71). The extra Gamma function T'(1 4 ¢) is, essentially
coming from the negative energy part.

(Note: Using degenerate Weber-type exact WKB, we can produce
this result completely)
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Double well in Gutzwiller’s form

(D": Imh >0, D™: Imh < 0)
D* = (1+A4)(1+C)+AB = (1+ A1+ A1+ =)
Using G(E) = —% log D,

G(E) = Gp(E) + Gnp(E) (73)

) ) 1
Gp(E) = —5=log(1+ 4) = = log<1 + A> (75)

G189 = _(fE log (1 + (1+B;ﬁ)2> (76)
0 B
= ~3E log <1 + W) (77)
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The derivative term 8%/1 produces the “period”

iA — ieij Sodd — <a% Sodd) efA Sodd
A

— 1_71 e$4 Sodd = _12‘
(ﬁherO(h)) = 2iTyA. (78)

and similarly,

0 1.

T4 is real, and Tz is pure imaginary.
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Using these quantities, G(F) can be expressed as

G(E)=Gp+ an (80)
== TA Z A" + leA Z A", (81)
Grp(E) = _a% Z —B)", (82)

(Di)ZQB _ 3(220:1(—1) A~ )(Z;’il(_l) A—l) (Imh > 0)
BT\ (-)F 45 (T (-1/4")  (mh<0)

(83)
(;;((Di = —zf Z 1)) (T  (n + m)Ta) B(AT)"™™,
nm 1
(84)

This is exactly the form of Gutzwiller trace formula and the factor

(—1)™ is regarded as the Maslov index. 40 /55



V(x)

Figure 6:

Chnp ~ i(—l)n(DfB)” (85)
n=1

D;*B = {B(Z?l(l)m’“) (CRi(-1)!A7!)  (Tmh > 0)

B(Xpli (—1)FAR) (302, (-1)'AT) (ImA < 0)
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Partition function and QMI
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Partition function

G(E) = GP(E) + an(E) (87)

(88)

Gp(E) = _aaE log(1+ A) — 88E log<1 + A> (89)
0 B

Gnp(E) 3E log (1 + (D§)2> (90)

Z(B) = 2% / +OO G(E)e PEdE (91)

43/55



Z = Zp(B) + Znp(B) (92)

an(ﬂ):;m[““ [_8‘171% (1+<DBi)2>]e—ﬁEdE (93)

—1300 A

- gL /Emol 145 N\epPap (94)
= Pomi Jie BT (0526

—100

gL /:+m§: ! (B)n(_me—ﬂEdE (95)

2mi Jeico 2=\ (D)2

B o e &, so this summation is indeed multi-bion contribution.
Using DDP formula, we can say

8:z% = 5.127] (96)

i.e. we can identify the exact form of resurgent structure of the

partition function!
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QMI(quasi-moduli integral) form
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QMiI(quasi-moduli integral) form

. B
Using A — ¢ ~"'5a(Zh | By defining s = E/(hwa) — 1/2,

an(/B) = (97)
1 R 1 2 1 2718 " 7,6W—A —sB
/B% /Gioo ;”(BF(_S) %ei ) e P72 hwae *Pds.
(98)

Here, the partition function obtained by calculating the path
integral is as follows:

ZI])
7 = (99)
1 He S g (det My " Sinst 4 A g
- - ion {00 T e F2mis bﬁd )
Pomi ,/Hoo ; n (e detiy) or(3) e ©w

(100)
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New perspective of QMI

2n ) 2n
omr = [ ( / dnew)g S r— B
iz \Jo k=1
2n

1 10 . AN
_ —sB +in(—s)( ° o
i /_ioo dse (e <2> I( s)) (101)

From the path integral,

20 = =m0 TG (Go5)

(102)

The first - are from two vacua and the latter ones

1
(;-E)T(3-E)

are from QMI. This miracle is easily explained by this Gutzwiller's
representation. Essentially both have the same origin, the infinite
number of A cycles, D' = IJ%A =Y 2(-1)"4A" ~T(3 — E).
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The intersection number of
Lefschetz thimble
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The intersection number of Lefschetz thimble

First, we write down the partition function formally as a sum over
saddle points

S|x]

Z(B) =tre P4 = /DJ: e n
[z0] [=1]
=ngS [esﬁo Zanhn eisﬁl anh”
= an / Dreh = an Z:(B), (103)
o vE o

where S[-] denotes the Borel summation of series expansions and

+n1 S + ...

T, stands for saddle points.
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= 1,Gy(E). (104)

The trace of resolvent G(E) can be connected to the Fredholm
determinant D(E) = det (I:[ - E) via the relation

_% log D = G(FE). Then, we have

D(E) =[] D (B), (105)

where D, (E) stands for the Fredholm determinant for each
thimble.
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Now, the quantization condition given by Eq. (61) can be rewritten

as

D,

Zn

D=(1+A4)1+A ][0 (106)
n=1

4L B "
_ (&) (107)
1 (19 1/ B\"
@ Ly —BE
T 2mi [8En(D%> }6 B

211 n 2

e+1i00 n
_B 1 (F(_S)zBemm(lms)) o~ BwA /24 by s

€—100

(108)

— The Maslov index is regarded as the intersection number of
Lefschetz thimble!
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Summary

We show how the two resurgence are related each other, and
the Stokes phenomena of partition function (or energy)
corresponds to the change of the “topology” of the Stoke
curve.

We show the cancellation of Borel ambiguity of partition
function without approximation.

We show the relation between the Maslov index and the
intersection number of Lefschetz thimble and how to
determine it.

Using Exact WKB method, we show the exact relationship
among Schrodinger eq., Bohr-Sommerfeld, Gutzwiller and
path integral.

(Generalizing to N-ple well potential, including higher genus

systems.)
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Discussion

e Exact WKB on S! with 6 term — succeed! we can see the
degenerate at 8 = 7 too

e phase transition and complex turning point

e Degenerate Weber vs Airy-type exact WKB
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Appendix: triple well

D =(1+ A1)(1+ A2)(1 + ATY)

fes) 2 nq (="
. H exp 1 B ! + ! + B .
n D:Xl Df::2 Dgl DjQ D:Xl Dzl Di?

n=1
(109)

V(x)

Figure 7:
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Z = Zy+ Znp, (110)

with

1 e+ioco o —BE
PR [77 log(1 + Al)]e iz
27 Je—ioo oE

L e 5 1 et+ioco el
2 o 1 9 =il —BE
[ o5 log(1+A2)]6 dE + / [ o 10g(1+A1 )}e dE,

€e—1i00

2mi Je—ioo 2mi

(111)

n
B [etioco &1 . 1 E Ea
Znp = — Z —(-1)"|B EE = + i A b

i Jemie 2= DXIDAQ Dy, D7, D+1 Dy, DA,

etico X 1 tmig B E B 1 E L B
NIl SRR 7l O =G )t (G-
n hwa, ) 20 \2  hwa, 3 gy

27 Je—ico 1

B2 1 B \* (1 E -
N o r({- - ——_ e dE . (112)
(2m)3/2 2 hway 2 hw 4,
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