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0) Thanks for nice talks to Tatsu Misumi and Gerald Dunne

1) Critical points at infinity vs. real/complex bions in QM

2) Coupling a TQFT to QM 

3) Adiabatic continuity and deformed Yang-Mills 

4) Coupling a TQFT to YM 

5) Critical points at infinity and  magnetic/neutral bions in QFT

I will  review some ideas and some new, and will tell you two parallel stories 
with the hope to merge them.  Will also describe some (yet unresolved) puzzles. 



 Critical points at infinity and  
real/complex bions in QM

Part 1
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I will consider first the following QM systems. 
(Many parallels with the saddles in semi-classical QFTs with fermions.)

Nf =1  SUSY QM 

Nf >1 related to QES systems. If exp[+W] or exp[-W] is normalizable, the 
lowest Nf  states are exactly solvable!  These systems are called Quasi-
Exactly Solvable (QES) (Turbiner, Ushveridze 87), and to my mind, not 
less interesting than supersymmetric QM (very likely more.)

Quantizing the fermions, (or integrating them out exactly),  we end up with 
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QM with Grassmann valued fields
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Note that the potential has a classical and quantum part. The tilting is a one-loop
 quantum effect, induced by integrating out fermions. 

If the tilting is rendered classical, the story changes quite a bit. But such quantum 
induced potential appears naturally by integrating out fermions both in QM and 
QFT, it is worthwhile to discuss this system for its own right. 



Examples of exactly solvable states
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Basics of instantons- 1

ẋ = ±W 0(x) .

W (x) = 4 cos
⇣x
2

⌘
=) xI(⌧) = 4 arctan (exp[⌧ � ⌧c]) ,
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Instanton equation

Instanton solution



The instanton amplitude:

I ⌘ ⇠ = J⌧c e�SI

"
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• The overall amplitude: density of the instantons. Characteristic separa-
tion between instantons: ⇠ e+SI , dilute instanton gas.

• Jtc =
p
SI/(2⇡): Jacobian associated with the bosonic zero mode.

• MI = � d2

d⌧2 + V 00(x)|x=xI(t) = � d2

d⌧2 + 1 � 2 sech2(⌧ � ⌧c) ,: quadratic
fluctuation operator in the background of the instanton. (Pöschl-Teller
form). Exact zero mode is given by

 0(⌧) = ẋI(⌧) =
2

cosh(⌧ � ⌧c)

The “hat”: the zero mode has to be removed, and detM0 is a normal-
ization factor, which we take to be the corresponding free fluctuation
operator.

• Perturbative expansion around instanton:

PI(g) =
1X

n=0

bI,ng
n,

which is a formal asymptotic series, which is in general not Borel summable.

• The determinant of the instanton fluctuation operator can be computed
using the Gel’fand-Yaglom (GY) method. (See Marino’s book).

-10 -5 5 10

-1.0

-0.5

0.5

1.0

1.5

2.0

Basics of instantons-2



Remark: Do instantons always contribute to physical observables? 
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In almost all books and texts, you will see the discussion of double-well or periodic potential, but not a more 
generic potential with harmonic degenerate minima as shown in figure. Why not? 

Despite the fact that there are exact instanton solutions, for generic potential of this type, they typically do 
not contribute to the spectrum at the  exp[-S] order, rather, the first NP contribution appears at order 
exp[-2S], related to the concept of critical point at infinity (which I will explain). 

The reason instantons do not contribute at leading order is that the determinant of fluctuation operator is 
infinite unless the frequency in two consecutive well are the same. 

Therefore, in QM, instanton contributing to spectrum is exception instead of being a rule.  
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Bender-Wu Mathematica package written by Tin Sulejmanpasic:
https://library.wolfram.com/infocenter/MathSource/9479/.

Perturbation theory  by Bender-Wu method

Description 
The BenderWu package allows for analytic computation of the perturbative series in 1D quantum mechanics around  
a harmonic minimum of the potential. The code is based on the method pioneered by Bender and Wu.

Large-order factorial growth for harmonic level N 

Large-order factorial growth for
ground state. 



Instanton interactions

Since instanton equations and Euclidean eq of motion are non-linear, 
two instanton configurations is not a solution at finite separation. 

xII(⌧) = xI(⌧ � ⌧1) + xI(⌧ � ⌧2),

xIĪ(⌧) = xI(⌧ � ⌧1)� xI(⌧ � ⌧2),

SII(⌧12) = 2SI +
A

g
e�⌧12 , repulsive,

SIĪ(⌧12) = 2SI �
A

g
e�⌧12 , attractive

Attractive/repulsive are just words, inheritance from old literature. 
Caused too  much confusion in past. This formula just means that 
these combos are not exact solution for finite separation. That is all.  
Tau direction is called  quasi-moduli space.  



In the � ! 1 limit, we can write Z as
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whee ⇠ ⇠ e�SI is the instanton amplitude.

Cluster expansion
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For particle on a circle with unique minimum on the circle (for simplicity)



Compactify R ! S1
�
in order to study Z(�) = Tr [e��H ].

The interaction between two events is modified in a fairly obvious way into:
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flipped about the imaginary axis for ✓ ! 0�.



[IĪ]± =

✓
⌥i⇡ � � � log

✓
A

g

◆
+ . . .

◆
[I][Ī]
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The leading terms (structures) obtained in Bogomolny  and Zinn-Justin early 80s, 
but not sufficiently appreciated.   The interesting thing is, B-ZJ 
was not an unknown work.  The problem was that their methods in the 
derivation did not sufficiently convince people. (Otherwise, they would 
held this conference in ~1985). I was personally fascinated by what they did, 
and was convinced that their main claim was correct.   

 The overall structure was obtained  in 2014, in Gerald Dunne and MU. 
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 Borel-Ecalle summability in bosonic theory 

ImB0,✓=0± + Im [II]✓=0± = 0 , up to O(e�4SI )
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 SUSY, QES and in between: parametric resurgence  
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Instanton interactions in the presence of fermions or quantum tilting
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Concept of critical point at infinity and non-Gaussian critical points

log[A/g]

[II] thimble

Unlike Gaussian critical point, the critical point at infinity itself does not contribute.  
However, its thimble gives major contribution. 

The major contribution on the thimble comes about from configurations (bions) which are
exact solutions to quantum modified  holomorphic equations of motions.   The equations 
are for a holomorphic classical mechanical systems, and holomorphic version of Newton’s 
equations.   These are called real and complex bions and I will show you their plots.  
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V+(�)

Log[A/g] �
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Origin of many many confusions in 
literature, a figment of imagination. 

(black-solid curve): For real values of the separation ⌧ 2 R+, which is the naive
(or customary) integration cycle, the interactions are completely attractive, and
configuration is viewed as unstable. (red-dashed curve): the e↵ective potential
on the thimble. The value ⌧⇤ = ln (A/g ⇣)+ i⇡ gives the dominant contribution
to the [IĪ] amplitude integral.

At � = 1, the interaction potential between I and I is V (⌧) = A
g e

�⌧ + ⇣ ⌧ .

The critical value ⌧⇤ = ln (A/g ⇣) gives the dominant contribution to the [II]
amplitude integral
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Working of resurgence at arbitrary ⇣

Thanks to Tin Sulejmanpasic for his BenderWu Mathematica package, this is possible as a symbolic calculation.  

Large-order behavior can be extracted:  (Kozcaz, Sulejmanpasic, Tanizaki, MU, 2016)

Parametric resurgence
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Where b’s are non-trivial polynomials of zeta. 

And using the NP contributions to the energy:

Im
h
S±E

pert.(N = 0, g, ⇣) + [CB]±(N = 0, g, ⇣)
i
= 0.

Quite remarkable, traditional form of resurgence. 
At integer zeta, ambiguity disappears, pert th becomes convergent.  We will 
find similar structure in QCD(adj) as a function of Nf. 

Parametric resurgence



Supersymmetric QM and  complex bions-I
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E = E1

E = E2

Take Double-well susy QM. This system breaks susy spontaneously. (Witten, 81)
Quantize fermions and reduce the system to Bose-Fermi pair of Hamiltonians with tilted potential.

Ground state energy is zero to all orders in P.T.  But is known to be lifted 
non-perturbatively.  What causes it? 

In the inverted potential, there is an obvious real bounce solution, but this is not related 
to ground state properties.  

At level E1, the classical particle will fly of to infinity, infinite action, irrelevant. So, what causes the non-zero ground state 
energy in bosonized description?
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Supersymmetric QM and necessity of complex bions!
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x
x1 x2
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E = E2

Take Double-well susy QM. This system breaks susy spontaneously. (Witten, 81)
Quantize fermions and reduce the system to Bose-Fermi pair of Hamiltonians with tilted potential.
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Exact complex bion solution

Complex conjugate turning points

If complex bion is not included, we would conclude Susy is unbroken. Contradiction!



Periodic potential,  real and complex bions

Real Bion
Complex 

Bion

Bounce

Inverted potential

⇒If complex bion is not included, real bion  renders ground state energy negative. 
In violation of Susy algebra. (a would-be genuine disaster)!

⇒Complex bion  is strictly necessary. But it is not only multi-valued, but also singular.  Yet, its action is finite.   
Imaginary part of action iπ. This is the hidden topological angle (HTA) (Behtash et.al.2015)
This is the sense in which we have to go through a change of perspective in path integrals!  These are legit 
configurations contributing to path integral. (These are in Big “sins” category, according to ancient texts.)

This system has Witten index zero but susy is known to be unbroken. Two ground states, Bose-Fermi paired.   
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Coupling  TQFT  to  QM 

Part  II



0) Adiabatic continuity (strong coupling NP phenomena can be continuously 
connected to weak coupling NP phenomena).  A conjecture, for which there is 
ample evidence. 

1)Mechanism of mass gap generation in deformed YM, QCD(adj),  and deformed 
QCD in any rep. ferm.  Some very exotic mechanism, so much so that we could not 
guess them without solving, but rigorous in the weak coupling domain. 

2)Absence of mass gap in chiral limit of QCD, derivation of chiral Lag.  

3)Confinement in YM and QCD with fermions in rep R.

4)Mechanism of both discrete and continuous chiral symmetry breaking in QCD-
like theories

5) Correct theta angle dependence, topological susceptibility 

6) Understanding of  semi-classical approach more deeply eventually lead to  
“Resurgence in QFT and QM program”. 

Motivation: We learned a lot from R3 x S1, but



If weak coupling EFT on the calculable regime adiabatically connected to strong 
coupling regime knows so much about the strong  coupling domain: 

1)  Doesn’t  some facts concerning  very rich non-perturbative microscopic effects/
dynamics/saddles  of  the weak coupling constructions on small S1 x R3 
survive in the strong coupling ? 

2) Why can’t we start studying strongly coupled dynamics on R4 or arbitrarily large 
M4 or Rd directly for d-dim QFT? 

But I am quite disturbed by the following:
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QM of particle on a circle with N-minima: 
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TQFT coupling to QM: Something sophisticated for something simple

Below, I will describe how to couple a TQFT to QM. This will describe
an abstract formalism for something embarrassingly simple in QM.
At the end of next few pages, you may even think why we did this at all. 

What I will do is: In TN  model with ZN  symmetry, I will describe steps to 
turn on a classical background for ZN  or gauge ZN completely. 

The point is: The abstract formalism will cary over verbatim to Yang-Mills 
theory, QCD(adj), and with slight changes to QCD(F) (any flavor),  
as well as many other interesting QFTs.  And will reveal insights which 
are otherwise not obvious to see.
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(A(1), A(0)) pair describe a ZN gauge field that can be turned on in quantum
mechanical TN model to probe saddles, in particular, to probe the fractional
instantons.

A(1) 7! A(1) + d�(0), A(0) 7! A(0) +N�(0), F (0) 7! F (0)

To couple a classical ZN background field to the q-field: q 7! q � �(0),

Gauge Inv. combos: Nq +A(0), dq +A(1) = (q̇ +A⌧ )d⌧

ZN   TQFT

Kapustin, Seiberg, 2014

A sophisticated way of writing �p,0 mod N.



Z[(A(1), A(0)), p] =

Z
DF (0)

Z

q(�)=q(0)
Dq ei

R
F (0)^(NA(1)�dA(0))+ip

R
A(1)

⇥ exp

✓
�1

g

Z
d⌧

⇣
1
2 (q̇ +A⌧ )

2 � cos(Nq +A(0))
⌘
+

i✓

2⇡

Z
(dq +A(1))

◆

QM coupled to TQFT background

Simple question: What does it calculate ? 

I1

Ī1
Ī2

I2

|1i

|2i

|3i

|4i

Ī3 Ī4
I4I3



Z` = tr[e��HU`] =
NX

j=1

hj + `|e��H |ji =
Z

y(�)=y(0)+ 2⇡
N `

Dy exp(�S[y]),

Twisted BC = TQFT background

U: Translation operator, ` = 0, 1, N � 1 fixed

One can trade  TBC  with  ZN background field. Use field redef. 

q(⌧) = y(⌧)� 2⇡`

N�
⌧, hence q(�) = q(0) mod 2⇡.

S[q, `] =
1

g

Z
d⌧


1
2

⇣
q̇ +

2⇡`

N�

⌘2
� cos

⇣
Nq +

2⇡`

�
⌧
⌘�

+
i✓

2⇡

Z ⇣
dq +

2⇡`

N�
d⌧

⌘

which is nothing but ZN TQFT coupled to QM. 
I1

Ī1
Ī2

I2

|1i

|2i

|3i

|4i

Ī3 Ī4
I4I3



0 �

2⇡

N

y(⌧)

q(⌧)

1

N
A(0)(⌧)

The instanton data (non-trivial topological charge) 
is transmuted to data about ZN background gauge field.

TBC : y(�) = y(0) +
2⇡

N
` q(⌧) = y(⌧)� 2⇡`

N�
⌧,

PBC : q(�) = q(0) + ZN background gauge field



Gauging ZN and (TN/ZN)p model

Z(TN/ZN )p =

Z
DA(1)DA(0) Z[(A(1), A(0)), p] �(NA(1) � dA(0))

⌘ 1

N

N�1X

`=0

e�i 2⇡`p
N Z`

= e⇠ cos
✓+2⇡p

N

Discrete theta angle ✓p = level p Chern-Simons = picking Bloch state with
momentum p

I1

Ī1
Ī2

I2

|1i

|2i

|3i

|4i

Ī3 Ī4
I4I3

Gauging ZN is equivalent to identifying adjacent sites.

It dilutes Hilbert space by a factor of N. 

N dimensional Hilbert space reduce to a 1 dimensional one. 

 ZTN =
N�1X

k=0

e⇠ cos
✓+2⇡k

N



Adiabatic continuity and  
Deformed   Yang-Mills on

R3 ⇥ S1

Part  3



from: S. Bethke, hep-ex/0407021

• asymptotic  freedom 

Asymptotic Freedom

• Short distance: Weakly 
coupled, calculable...

• Long distance, 
strongly coupled. 
(Lattice works,  
analytical methods 
gloomy)

• Can we find a regime of asymptotically free  gauge theories 
where  the  NP dynamics become calculable?



Adiabatic continuity and analyticity for YM?

• We first want a (semi-classically) calculable regime of field theory, say of  
Yang-Mills or QCD. Of course, this is desirable. But is it possible? 

• It  is NOT known if such a framework exits on R4. In fact, theory becomes 
strongly coupled at longer distances for QCD-like theories. 

• Consider these theories on four manifold R3 x S1, and study their dynamics 
as a function of radius. At small-radius, the theory is weakly coupled ( thanks 
to asymptotic freedom) at the scale of the radius. But the theory is non-
analytic as a function of radius, there is a phase transition. 

high� T low � T

Rd�1 ⇥ S1�Rd�1 Rd

QGP The phase we live in.



R3

 Phase transition

high� T low � T

We want continuity

Rd�1 ⇥ S1�Rd�1 Rd

Rd�1 ⇥ S1L

The idea of adiabatic continuity

Thermal:  Rapid crossover/phase transition  at strong scale



Adiabatic continuity in non-susy theories is a spin-off  of a 
brilliant idea by Eguchi and Kawai (82), called large-N reduction 
or volume independence.   

What does EK say? It says something far more stronger than 
continuity, it implies volume independence, observable being 
independent of compactification radius at large-N.  (Aleksey 
Cherman will talk about large-N.) 

But it is tricky to achieve EK. 

Adiabatic continuity and analyticity



Large N volume independence or
“Eguchi-Kawai reduction” or “large-N reduction” 

Theorem: SU(N) gauge theory on toroidal compactifications of  
to four-manifold  

No volume dependence in leading large N behavior of topologically trivial
single-trace observables (or their connected correlators)   

provided 

there are no phase transitions as the volume of the space is shrunk.
More technically, no spontaneous breaking of center symmetry or 
translation invariance

Proof: Comparison of large N loop equaions (Eguchi-Kawai 82)  in lattice gauge theory or \ 
N=∞ classical dynamics (Yaffe 82)

The only problem was that no-one was able to find any example of gauge 
theory in which “provided” holds. (and perhaps violating causality, an example 
already existed at the time EK was written. This is understood only 25 years 
later.)

R4

R4�d � (S1)d



• Because of the attractiveness of the idea, much 
effort has been devoted. It was one of the hot 
subjects in mid-80’s. 

• However, there was always a phase transition when 
the space shrunk to small volume.

• Technically, an effective potential calculation in 
terms of Wilson lines (used to determine the phase 
of the small volume theory)  gave a negative sign 
for all gauge theories. And we needed a positive 
sign!  People gave up.

Stumbling block

deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

80’s:  EK, QEK, TEK.
Eguchi, Kawai,  EK,  Briilliantt, but fails     
                   
Gonzalez-Arroyo, Okawa,   TEK, Failed, and 
REVIVED.  (Many deep connections to non-commutative 
QFT, and recent works on TQFT coupling to QFT.)

Bhanot, Heller, Neuberger,  QEK, Fails  

Gross, Kitazawa, (YM Beta function from matrix model 
assuming working reduction. Clever.)

Yaffe, 

Migdal, Kazakov, 
Parisi et.al.
Das, Wadia, Kogut,  
 + 500 papers.... , but no single working example!

Order parameter

Potential

Instability (bad)

Stability (good)

Marginal 

Instability



• Because of the attractiveness of the idea, much 
effort has been devoted. It was one of the hot 
subjects in mid-80’s. 

• However, there was always a phase transition when 
the space shrunk to small volume.

• Technically, an effective potential calculation in 
terms of Wilson lines (used to determine the phase 
of the small volume theory)  gave a negative sign 
for all gauge theories. And we needed a positive 
sign!  People gave up. 

Stumbling block

deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

80’s:  EK, QEK, TEK.
Eguchi, Kawai,  EK, Fails                          3rd ref in the list.
Gonzalez-Arroyo, Okawa,   TEK, Fails    Teper, Vairinhos
Bhanot, Heller, Neuberger,  QEK, Fails   Bringoltz, Sharpe
Gross, Kitazawa, 
Yaffe, 
Migdal, Kazakov, 
Parisi et.al.
Das, Wadia, Kogut,  
 + 500 papers.... Order parameter

Potential

Instability (bad)

Stability (good)

Marginal 

Instability



• ZN  center symmetry, order parameter = Wilson line Ω

•  L> Lc:  unbroken center symmetry 
               
               
             confined phase
• L < Lc:  broken center symmetry

               
              deconfined plasma phase          failure of EK reduction

�tr �n⇥ = 0

⇥tr �n⇤ �= 0

g(x + L) = hg(x), hN = 1

tr�(x, x + L)� h tr�(x, x + L)

Aperiodic gauge rotations, h ∈ ZN

Yang �Mills on R3 ⇥ S1



V [⌦] = � 2

⇡2�4

bN/2cX

n=1

1

n4
|tr (⌦n)|2

Gross, Pisarski, Yaffe, 1981

Gauge holonomy potential 

Minimum at center-broken configuration. The value at min is the 
Stefan-Boltzmann law for gluons. 

At high-temperature YM theory, this is inevitable and there is no  
room for negotiation. This is also true in any QCD-like theory, 
and there is no hope here.  

F = �⇡2

45
T 4(N2 � 1)



Evading the stumbling block(s)

In 2006, I realized that the analog of the effective potential calculation 
in  supersymmetric gauge theory always gave zero. 

But that requires using periodic boundary conditions for fermions. I 
was perfectly happy with it, and  interpret it as non-thermal 
compactification, and realize that what you are calculating is not 
thermal partition function, but 

What I did not know then: It was considered as another  big “sin” to 
use periodic b.c.   at least in a large-portion of non-supersymmetric 
QCD community. 

At the heart of the super-symmetric cancelation was  following identity:  

eZ(L) = tr[e�LH(�1)F ]



Evading the stumbling block(s)
In 2006, I realized that the analog of the effective potential calculation 
in a supersymmetric gauge theory  gave zero. At the heart of the 
cancelation was  following identity:  

�1 + 1 = 0 More precisely, 

�1⇥ (stu�) + 1⇥ (same stu�) = 0

Immediately, we deduce:

�1 + Nf > 0 for Nf > 1
Crucial Positive sign.  (Hosotani did also show this in gauge-Higgs unification 
context, but its importance for confinement problem and large-N volume 
independence was not realized.) In QCD community,  all earlier calculations were 
done for a specific (thermal) boundary condition. 

The crucial point: +1 appears due to the 
boundary conditions, and not supersymmetry!



Gauge holonomy potential QCD(adj) Nf-flavor

V [⌦] = (Nf � 1)
2

⇡2�4

bN/2cX

n=1

1

n4
|tr (⌦n)|2

This sign flip probably  gave birth to  one of the most promising windows to 
non-perturbative QCD. This is what I thought in 2007, and I will describe later in this talk. 
I believe it endures the test of time. And in the longer run, it is something that will remain.   

Kovtun, MU, Yaffe, 2007. Showed that QCD(adj) satisfies volume-independence, 
Eguchi-Kawai dream naturally.  



• Motivated by QCD(adj), Yaffe and I proposed a double-trace 
deformation that prevents center-breaking. (Yaffe, MU, 2008).

SYM�
= SYM +

�

R3�S1
P [�(x)] P [�] = A

2
�2L4

�N/2⇥�

n=1

1
n4

|tr (�n)|2

Can we achieve center-stability in YM in small-L?

* We can now do reliable semi-classics here, and it 
is continuously connected to YM on R4.

The double-trace deformation is something extremely interesting  and  has some very deep 
aspects especially in the context of large-N volume  independence, but it is not my goal to discuss 
it in this talk. 



Dimensional Reduction ? No, no!

broken center

a) Attractive b)repulsive c)No force
quantum moduli spaceunbroken center

 4π/

a)Center−broken 
large N

0

finite or large N      finite N
 b1)Center−symmetric b2)Center−symmetric

L

2π/L

L

2π/L

L

2π/L

4π/ 4π/ 4π/

0 0(LN)    
(LN)    

 2π/

• small L, asymptotic freedom,  heavy, weakly coupled KK modes

•usual case: broken center symmetry
    〈tr Ω〉≠ 0 ⇔ eigenvalues clump

     mKK = 1/L, 2/L, ..., 
   perturbative control when LΛ << 1
   integrate out ⇒ 3d effective theory,  L-dependent

•center-symmetric case:
 〈tr Ω〉=  0 ⇔  eigenvalues repel

      mKK = 1/NL, 2/NL, ..., 
    perturbative control when NLΛ << 1
   
 topological defects (instantons),  
 mass gap,  confinement, later……



Topological configurations: Monopole-instantons
1-defects,  Monopole-instantons:  Associated with the N-nodes of 
the affine Dynkin diagram of SU(N) algebra.  
The Nth type corresponds to the  affine root and is present only because 
the theory is locally 4d!                     

Sk =
8⇡2

g2N
=

SI

N

Proliferation of monopole-instantons generates a non-perturbative mass gap 
for gauge  fluctuations, similar to  3d Polyakov model (Polyakov, 74). 
It is first generalization thereof  to local 4d theory!  

Action 1/N of the 4d instanton, keep this in mind!

Mk ⇠ e�Ske�↵k·b+i↵k�+i✓/N , k = 1, . . . , N

van Baal, Kraan, (97/98), 
Lee-Yi, Lee-Lu (97)



 Deformed YM, Euclidean vacuum

Bii,✓=0±

hF 2i0± / Mi + [MiM̄j ] + [MiM̄i]0± + . . .

Ambiguity in condensate sourced by neutral bion.

Relation to R4? Will comment on this later…

Dilute gas of monopole instantons and bion events



The essence of mass gap in Polyakov-mechanism in 3d

Finite magnetic screening length=mass for  gauge fluctuations for  U(1) photon
= Confinement of electric charge (I will not show this part explicitly since I would like to 
emphasize mass gap. But the two are intimately related.)

‘t Hooft-Polyakov monopole solutions (instantons in 3d) in Georgi-Glashow model.
Partition function of gauge theory = The grand canonical ensemble of classical monopole 
plasma. The field of external charge in a classical plasma decay exponentially. Debye-
Hückel 1923. Proliferation of monopole-instantons generates mass gap for gauge 
fluctuations.

Polyakov 1977

1
r
�⇥ e�r/�

r

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

e�r/�

r

1
r

Due to screening



Monopole Operator

Long-distance  3d dual theory 

Maxwell term

Sdual =
⌅

R3

⇧ 1
2L

� g

2⇤

⇥2
(⇤⌅)2 � ⇥

N⇤

i=1

cos(�i · ⌅)
⌃
.

F (j)
µ⇥ =

g2

2⇥L
�µ⇥⇤ ⌅⇤⇤

j

�0
a� � {�1,�2, . . . ,�N�1,�N} .

Monopole 
charges usual N-1 monopoles

monopole due to
 compactness of Higgs scalar

Abelian duality

Lee, Yi, Kraan, vanBaal, 97, 98



Semi-classical Mass gap on R3 x S1 

m2
g = ⇤2(⇤LN)5/3 max

k
cos

✓ + 2⇡k

N

Mass gap monopole-instanton effect.

Expected non-trivial theta angle dependence (not present in Polyakov model).

For SU(2), mass gap vanishes at theta=pi. An exponentially smaller mass gap 
appears due to magnetic bion effects. The vacuum is 2-fold degenerate due to 
CP-breaking, as per magnetic bion induced potential. 

Analysis strictly reliable for  (⇤LN) . 1



Topological susceptibility in SU(4) dYM on small S1 x R3 vs  Pure YM on the confined 
phase approximately R4.   The deformation parameters for single winding  and double 
winding loop is  denoted by h. 

Green curve is roughly the sharp drop associated with the deconfinement phase transition. 

Bonati, Cardinali, 
D'Elia, Mazziotti, 2019

The simulation results strongly suggest us that we should carefully 
think about deformed YM. Clearly, it knows something deep about 
YM on R4!

Two remarkable result from lattice simulations of deformed  
theory at small S1 x R3: Topological susceptibility



Mass gap in  SU(3) dYM on small S1 x R3   where circle size is roughly half of the strong 
length scale (500MeV).  (Theory without deformation would be well in the deconfined phase.)

Pure YM on the zero temperature  confined  phase approximating  R4.   

The deformation parameters is  denoted by h. 

Remarkable agreement between small-circle deformed theory and zero temperature pure YM.
(in exact correspondence with observations in Yaffe/MU, and Shifman/MU (2008) 

Athenodorou, Cardinali, D’ Elia 
To appear soon!

This results tell us to take 
dYM far more seriously 
and to think much harder.   

Two remarkable result from lattice simulations of deformed  
theory at small S1 x R3: Mass gap



z(✓) =

Z

cell
[d�] e�s

=
⇣N�1Y

i=1

Z 2⇡

0
d�i

⌘ NY

a=1

e⇠e
i(↵a·�+ ✓

N )
e⇠e

�i(↵a·�+ ✓
N )

=
NY

a=1

 1X

na=0

1X

na=0

!
�n1�n1,nN�nN . . . �nN�1�nN�1,nN�nN

n1!n1! . . . nN !nN !

⇠n1+...+nN+n1+...+nN ei
✓
N (n1+...+nN�(n1+...+nN ))

The path integration over the fields
R
D� e�S has a zero mode part. In this

subspace, the measure reduce to an ordinary integral over the fundamental cell
of � field.

n1 � n1 = n2 � n2 = . . . = nN � nN = W

Looks familiar? Same condition as in our QM TN model, not an accident! 
Magnetic neutrality guaranteed by zero-mode integration  and it automatically  
enforces integer quantization of topological charge! See also Diakonov and Petrov.  

mentioned in Tanizaki, MU “Modified instanton sum in QCD and higher-groups”, details in 
“Strongly coupled QFT dynamics via TQFT coupling “

Mini-space formalism: What are the NP configurations that 
contribute to partition function of dYM on R3 x S1?



S =
SI

N
(2n1 + . . .+ 2nN ) + SI |W | 2 SI

✓
2

N
|k|+ |W |

◆
, k,W 2 Z

Q = W 2 Z

Configurations that contribute to the partition function possess integer 
topological charge, but fractional action!

The sum is still over integer topological charge just like the BPST 
instanton on R4 , but there is something intriguing going on about action.
It does satisfy BPS bound, but exhibits a far more refined structure!

What are we summing over  in dYM on R3 x S1?



The sum is still over integer topological charge just like the BPST 
instanton on R4 , but there is something intriguing going on about action.
It does satisfy BPS bound, but exhibits a far more refined structure! 
(graded resurgence triangle) 

⌫ = 1⌫ = 0⌫ = �1

S =
2SI

N

⌫ =
1

N

S = SI

What are we summing over  in dYM on R3 x S1?

S = SI

S = SI/N

S = 0

S = 2SI/N



TQFT coupling  in  
Yang-Mills

Part  4



To turn on a classical background gauge field for the Z[1]
N 1-form symmetry,

introduce pair of U(1) 2-form and 1-form gauge fields (B(2), B(1)) satisfying

NB(2) = dB(1), N

Z
B(2) =

Z
dB(1) = 2⇡Z

S[B(2), B(1),ea] = 1

2g2YM

Z
tr[( eF �B(2)) ^ ?( eF �B(2))] +

i ✓YM

8⇡2

Z
tr[( eF �B(2)) ^ ( eF �B(2))]

Promote SU(N) gauge field to a U(N): ea = a+ 1
NB(1)

1� form gauge trans. and coupling TQFT :

B(2) 7! B(2) + d⇤(1), B(1) 7! B(1) +N⇤(1)

ea 7! ea+ ⇤(1), eF 7! eF + d⇤(1)

Coupling ZN  TQFT to YM-formally

Kapustin, Seiberg, 2014, 
Komargodski  et.al. 2017



Modified instanton equation: ( eF �B(2)) = ⌥ ? ( eF �B(2))

Action: S = ⌥8⇡2

g2
1

8⇡2

Z
tr[( eF �B(2)) ^ ( eF �B(2))] =

SI

N

In SU(N) theory coupled to ZN background gauge field, the 
configurations which satisfy BPS bound have action SI/N, just like our 
monopole-instantons on R3 x S1. Is this an accident? Are they related?

I will make above very formal stuff first a bit more concrete 
(twisted BC a la ’t Hooft),  and then, even more concrete, describe 
in Hamiltonian formalism, in my own terms.   

because
N

8⇡2

Z
B(2) ^B(2) 2 1

N
Z



Not surprisingly,  TQFT background can be traded with ’t Hooft twisted boundary 
conditions. 

 't Hooft  (1981) found constant topological charge 1/N and action 1/N 
configurations for certain aspect-ratio of T4.  (He mentions that the reason 
for writing the article about a constant solution was the difficulty in finding them.) 
Historically, however, it was not easy to determine the  time or space-time 
dependent non-trivial solutions. 

Gonzalez-Arroyo, Garcia Perez et.al.  (1990s-) found by numerical lattice simulations on 
latticized  T3 x R  that  time-dependent fractional instanton solutions with action 1/N  
exist  in the presence of 't Hooft flux. 

I would like to argue that monopole-instantons are non-trivial configurations 
in the PSU(N) bundle! These are called ’t Hooft-Polyakov monopoles, but 
’t Hooft did not realize or even come close to understanding their role in PSU(N) bundle 
despite the fact that he searched for non-trivial configurations in PSU(N) bundle. 
Understanding this requires many things that happened after 2008 papers I wrote with  
Yaffe and Shifman, and interesting work by Cherman and Poppitz 2016 
(and easy to figure out only in retrospect)  

Some of these understanding require making things very  explicit and simple. 

TQFT coupling= ’t Hooft TBC



Consider compactifying R3 ⇥ S1
L to T 2 ⇥ R⇥ S1

L

Reminder: Hamiltonian interpretation of  
monopole-instanton in zero ’t Hooft flux background

A monopole-instanton in the case of Polyakov model always changes the energy
of vacuum state at finite Area(T 2). If � =

R
T 2 B = 2⇡

g ↵ana is magnetic flux,
then the change in energy between the zero-magnetic flux state and � flux state
is:

�E =

Z

T 2

1
2B

2 = 1
2

⇣
2⇡
g

⌘2
n2
a

Area(T 2)
> 0

lim
Area(T 2)!1

�E = 0

These states become degenerate with the zero magnetic flux state.

First, let me provide a Hamiltonian interpretation of ’t Hooft-Polyakov monopole

instanton in the absence of ’t Hooft flux background. (e.g. Bank’s book, page

226). The story I will tell you later will be crucially di↵erent from this standard

(but not su�ciently well-know) discussion.



Turn on  ’t Hooft flux background in 3-direction
N

2⇡

Z

⌧=�
B(2)

12 = 1

N

2⇡

Z

⌧=0
B(2)

12 = 1

Z

⌧=0
B =

2⇡

g
⌫1

Z

⌧=�
B =

2⇡

g
⌫1

|⌫1i

|⌫2i

�↵1

|⌫1i

↵1

N

2⇡

Z

⌧=⌧0

B(2)
12 = 1

Multiple ways to think about it:

1) ZN TQFT background.

2) Non-dynamical center-vortex.  

3) There can be decorations of center-vortex  
by dynamical monopoles associated with root 
lattice which do not change ’t Hooft flux, but 
change magnetic flux through T2.  (See 
Greensite’s review, but there vortex is 
dynamical.)

4) One can think of 1-unit of ’t Hooft flux 
as if it is sourced by fundamental monopole 
who’s charge is in weight lattice. But center-
vortex can exist on its own right without any 
source, and fundamental monopole does not 
exist in SU(N) theory.  If you wish to think in 
this dangerous description, the center-vortex can 
be viewed as if a snake eating its own tail. 
(Ouroboros, from ancient Egypt)



But now, there is something more interesting.  Consider the following magnetic flux 
configurations  (all of which have the same ’t Hooft -flux), which can be connected by 
monopoles in root lattice. 

� =

Z

T 2

B =
2⇡

g
⌫a, a = 1, . . . , N.

Ea = 1
2

Z

T 2

Ba
2 =

1

2A

⇣2⇡
g

⌘2
⌫2
a =

1

2A

⇣2⇡
g

⌘2⇣
1� 1

N

⌘
, a = 1, . . . , N.

which are exactly degenerate.

But the rest of  all other magnetic flux configurations have higher energy at finite Area(T2) 
and become only degenerate in the infinite Area(T2) limit. 

Classification of tunnelings in ’t Hooft flux background 

Ea � Eb = 0

On finite T2 x R x SL, there are two types of tunnelings.  
1) Between states that becomes degenerate in Area(T2) tends to infinity limit. Eg. Polyakov,  

dYM both without TQFT background.  
2)  Between states that are already degenerate at finite Area(T2). This one is new, in the presence 
of TQFT background. 
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In the small-T2 limit, and within Born-Oppenheimer approximation, YM with 
center-symmetric  holonomy along SL  reduces to quantum mechanical TN model! 

Born-Oppenheimer and TN  model

I1

Ī1
Ī2

I2

|1i

|2i

|3i

|4i

Ī3 Ī4
I4I3

There are N-induced classical minima due to classical ZN background!  In fact, this is one 
way  of phrasing the origin of N-metastable vacua in YM theory!  
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Hamiltonian description of
N
8⇡2

R
B(2) ^B(2)

=
`12`34

N

`12 induces a classical potential with N minima.
Sum of transition amplitudes between minima which are `34 units apart.



Here comes  the heart of the matter.

Why topological charge and action 1/N?  There seems to be 2 unrelated answers!

In center� symmetric background, Diag(U3) = ei�? = (1,!,!2, . . . ,!N�1),

Sa =
4⇡

g2
(↵a.�?) =

8⇡2

g2N
, Q =

1

2⇡
(↵a.�?) =

1

N

S =
8⇡2

g2
1

8⇡2

Z
B(2) ^B(2) =

8⇡2

g2N
, Q =

N

8⇡2

Z
B(2) ^B(2) =

`12`34
N

=
1

N

In ZN TQFT background:

Are they really unrelated? Not so clear, some of my friends said they are not for good reasons.



TBC (conventionally): U3(� = L4) = ei
2⇡
N `34U3(0).

According to Cherman and Poppitz (2016), the gauge invariant rewriting 
of U(1)N  photon is 

Fµ⌫,k =
1

N

N�1X

p=0

e�i 2⇡kp
N tr(Up

3Fµ⌫)

and they transform cyclically under zero-form center transformation, and so does 
dual photons and  monopole operators.  
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Hence, the zero form center-transformation 
changes the magnetic flux through T2 by a 
magnetic charge, valued in root lattice. This is 
our dynamical monopole instanton.  

�

Z

T 2

B =
2⇡

g
(⌫a � ⌫a+1)

= �2⇡

g
↵a

TBC vs. monopole-instantons

The crucial point here U3 being a center 
symmetric  background!  Because of that, 
center transformation ends up cyclically 
shifting magnetic flux!



Arbitrary large T3 x large SL

May be, the results that we obtained in deformed YM on R3 x S1 in 2007 were 
not some weak coupling, small circle artifacts. May be, they were trying to tell us 
something deeper about the theory on  R4 limit. We thought our construction 
was not powerful enough, it did not extend to the strong coupling regime and 
failed us.  

Perhaps, it was other way around. Our theory was much smarter than us, and was 
trying to guide us towards truth. It was us failing it. 
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(↵a.�?) =

1

N

True on arbitrarily large T4  emulating R4.



Theory T

S = |W |SI

couple to ZN TQFT
T/ZN

Lift to T

T

Qtop !
✓
W +

k

N

◆
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����W +
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N

����SI

Qtop = W 2 Z

Qtop = W 2 Z

S =

✓
|W |+ 2|k|

N

◆
SI

?

Standard classification

Refined classification

We reached to one of our goals. NP expansion 
on R4 is controlled by SI/N, but not SI. This is 
not only for YM, but all QCD-like theories and 
regardless of representations of fermions.



Part 5 

 Dynamics of  QCD(adj)  
on  

Critical points at  infinity  
and bions  

  

R3 ⇥ S1



Nf ≥ 1 massless adjoint rep. fermions
periodic boundary conditions ➡ stabilized center symmetry

 Kovtun, Unsal, Yaffe,07

QCD(adj) on R3 � S1

m2
n < 0

m2
n = 0

m2
n > 0

instability, “calculations between 1980-2007” 

Supersymmetric case, Nf = 1, marginal,

QCD(adj), Nf > 1, stability

�Z(L) = tr[e�LH(�1)F ] = Invariant
Susy-theory:          Supersymmetric Witten Index, useful.  
Non-susy theory:   Twisted partition function, probably as useful!

Z = ZB + ZF
�Z = ZB � ZF

V1�loop[⌦] =
2

⇡2L4

1X

n=1

1

n4
(�1 +Nf )

| {z }
m2

n

|tr⌦n|2

This sign flip probably  gave birth to  one of the most promising windows to 
non-perturbative QCD.  Still ongoing work. 



Dynamical abelianization

broken center

a) Attractive b)repulsive c)No force
quantum moduli spaceunbroken center

 4π/

a)Center−broken 
large N

0

finite or large N      finite N
 b1)Center−symmetric b2)Center−symmetric

L

2π/L

L

2π/L

L

2π/L

4π/ 4π/ 4π/

0 0(LN)    
(LN)    

 2π/

SU(N) ! U(1)N�1

Perturbative spectrum, 
Gapless Cartan subalgebra 
bosons and fermions. 

What happens Non-Pert? 



Theories with massless fermions: take  SU(2) QCD(adj) 

monopole operators have fermionic zero modes. 

e�S0ei� � . . .�⇤ ⇥� ⌅
fermion zero modes

Is there a gap or not? If so, there must be something new with 
respect to  AHW? How?  First, let us count the fermion zero 
modes. 

Hence,  unlike Polyakov mechanism, monopoles can no longer induce mass  gap or 
confinement, instead a photon-fermion interaction Affleck-Harvey-Witten(82). 
This is viewed as death of Polyakov mechanism in theories with massless fermions.
AHW proved gaplessness in Polyakov model with Dirac adjoint  
fermions in 1982 on R3. What happens on R3 x S1? 

S =
⇤

R3�S1

1
g2

tr
�
1
4
F 2

MN + i⇥̄I �̄MDM⇥I

⇥

In theories with adjoint fermions? 



Very important theorem! Importance of it is not yet sufficiently appreciated in literature. 

 index theorems 

Atiyah-M.I.Singer 1975

Callias  1978                                                            E.  Weinberg 1980

Nye-A.M.Singer,  2000                                          Poppitz, MU 2008: The one relevant for us!

Index theorems



Mass gap for gauge fluctuations!



Perspective from 2007: Topological  molecules 
The quantum numbers associated with                                   are (2, 0) and (-2,0). Since 
(2,0) = (1, 1/2) + (1,-1/2), we may think of it as a molecule. We refer to it as magnetic bion. 

e�2S0(e2i� + e�2i�)

How is a stable molecule possible? Same sign magnetic charge objects should repel each other 
due to  Coulomb law.

r

V

Coulomb law: 1/r repulsion

BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)



Topological  molecules 

Fermion zero mode exchange: 
log(r) attraction. 

The quantum numbers associated with                                  are (2, 0) and (-2,0). Since 
(2,0) = (1, 1/2) + (1,-1/2), we may think of it as a molecule. We refer to it as magnetic bion. 

e�2S0(e2i� + e�2i�)

How is a stable molecule possible? Same sign magnetic charge objects should repel each other 
due to  Coulomb law.

r

V

r

V

Coulomb law: 1/r repulsion



Topological  molecules 

Fermion zero mode exchange: 
log(r) attraction. 

The quantum numbers associated with                                  are (2, 0) and (-2,0). Since 
(2,0) = (1, 1/2) + (1,-1/2), we may think of it as a molecule. We refer to it as magnetic bion. 

e�2S0(e2i� + e�2i�)

How is a stable molecule possible? Same sign magnetic charge objects should repel each other 
due to  Coulomb law.

r

V

r

V

Coulomb law: 1/r repulsion

Stable molecules with sizes parametrically larger than monopoles!

r

V

Sum has a unique minimum. 

Note: same plot as in  
QM with Nf fermions



BPS KK

BPS KK
(2,0) (−2, 0)

(1, 1/2) (−1, 1/2)

(−1, −1/2) (1, −1/2)

Alice with Tweedledum and Tweedledee,  
Through the Looking-Glass and what Alice 
found there  (1871). 

LdQCD =
1
2
(⇧⇥)2 � b e�2S0 cos 2⇥ + i⇤̄I�µ⇧µ⇤I + c e�S0 cos ⇥(det

I,J
⇤I⇤J + c.c.)

magnetic bions lead to mass gap! magnetic monopoles

QCD(adj) vacuum is a plasma of magnetic bions

Correlated pairs.

No net 
topological 
charge!! 

This is the reason why nobody 
attempted to look for these things.

The first analytic solution for a locally 4d non-susy theory.



Perspective around 2012: Topologically non-trivial and “trivial”  saddles

Lesson: Usual topology insufficient to classify saddles in the problem!

(Qm, Qtop) =
⇣Z

S2

B · d⌃,
Z

R3⇥S1

FF̃
⌘

Figure 
for SU(2)



Topologically non-trivial and “trivial”  saddles

Lesson: Usual topology insufficient to classify saddles in the problem! 
    in neutral bion (Hidden topological angle). It took about 10 years to 
understand it, requires Lefschetz thimbles. 
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B · d⌃,
Z

R3⇥S1

FF̃
⌘ Operators 

for SU(N)

⇡



2-defects are universal, dictated by Cartan matrix of Lie algebra: 
Charged and neutral bions 

Topological molecules: 2-defects

Magnetic bion:  mass gap for gauge fluctuations, MÜ 2007 
Neutral bion generates a center-stabilizing potential:  
Poppitz-MÜ 2011,  Poppitz-Schäfer-MÜ,  Argyres-MÜ 2012, 
Poppitz, Anber, Shifman, 

Many other  interesting works, especially on sigma models in 2d:  (See Misumi’s talk and Fujimori’s talk)  
Kanazawa, Misumi (2014), Gonzalez-Arroyo, Garcia Perez, Sastre 2009,     
Bruckmann, Wipf,…. 2007, Nitta, Sakai, … 2004 



Modern perspective:  Critical point at infinity and 
configurations on their thimbles.

• As in the case of QM with Grassmann valued fields, the 
bion configurations should be viewed as being dominant 
configurations attached to the thimble of the critical points 
at infinity. 

• Very likely, as in QM, bions are exact solutions for the 
quantum modified equations of motion.  

• It is actually possible to map semi-classical discussion of 
QCD(adj) to a QM with Grassmann fields with a 
compactification in TQFT background as we did in YM.

• Recall the amplitudes in QM with fermions from the 
beginning of the talk. And observe the striking similarities.  
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B11,± = [M1M1]± = I1,1̄,± ⇥M1 ⇥M1
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Magnetic/Neutral bion amplitudes and many interesting physical results
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Bij = [MiMj ] / e�2S0

Bii = [MiMi] / e�2S0+i⇡

Mi = e�S0(↵i · �)2

1
2g2

R
F 2 ⇡ 2S0

1
2g2

R
F 2 ⇡ 2S0

 Deformed YM, Euclidean vacuum  N=1 SYM, Euclidean vacuum

Bii,✓=0±

hF 2i0± / Mi + [MiM̄j ] + [MiM̄i]0± + . . .
Ambiguity in gluon condensate sourced 
by neutral bion. Gluon Condensate vanishes, due to a hidden 

topological angle. (related to stationary phase 
associated with thimbles). First micro-realization
of a negative contribution to condensate!

hF 2i / 0⇥ nMi + (nBij + ei⇡nBii) = 0 .

Relation to R4?



IR-Renormalon problem in Yang-Mills theory

There is a very famous and important problem in Yang-Mills theory, attributed to ’t Hooft, 
which is described in a  famous set of lectures “Can we make sense out of QCD? “  

         contribution, calculated in some way, gives an ±i exp[-2SI].
Lipatov(77): Borel-transform BP(t) has singularities at tn= 2n g2 SI.

BUT, BP(t) has other (more important) 
singularities closer  to the origin of the 
Borel-plane.  (not due to factorial growth of
number of diagrams, but due to phase space 
integration.) 

‘t Hooft called these IR-renormalon 
singularities with the hope that they would be 
associated with a saddle point like instantons. 
No such configuration is known!  

A real problem in QFT, means pert. 
theory, as is, ill-defined. How to cure 
starting from microscopic dynamics?

[IĪ]

‘t Hooft(79)   
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renormalons:
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16π , 32π , ...2 2

singularities:  t =
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IR renormalons:
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Neutral topological molecules:
π2

QCD on Rt

t QCD on R xS3 1
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n/N      (n=2,3,...)

UV

Leading IR singularity 4SI
�0

= 12SI
11N



Standard view emanating from late 70s  
e.g. : from Parisi(78) 

Change the Question: What happens if we can make in deformed  
Yang-Mills theory  in the semi-classically calculable regime?



Bii,✓=0± = [MiMi]✓=0±
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This corresponds to an IR singularity in the Borel plane at 2SI
N

Calculating complex (neutral) bion amplitude similar to QM example: 
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t = −16 0

renormalons:
/βn2π

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

IR renormalons:
t = 16π n /β (n=2,3,...)2

0

Neutral topological molecules:
π2

QCD on Rt

t QCD on R xS3 1

4

n/N      (n=2,3,...)

UV

Important thing:  1/N parts match, these singularities in semi-classical domain are avatars of IR-renormalons.    
Perhaps, as one moves from  weak coupling to strong coupling, 2(S/N)  flows to (4S/Beta). Who knows?  

Also see Morikawa’s talk 



Surprises-1
• Many people used to believe that (many still do) confinement, mass gap 

generation, discrete chiral symmetry breaking, continuous chiral symmetry 
breaking, topological susceptibilities are  necessarily strong coupling 
phenomenon in 4d QCD and QCD-like theories. 

• You can see these statements everywhere both in the old and new literature, and 
we have seen over the last 13 years that this is complete fallacy. 

• We must draw a strict line between non-perturbative  vs. strong coupling 
phenomena.   

• All of the above are NP phenomena, controlled by  exp[-c/(Ng2)] effects that can 
take place both at weak coupling and strong coupling! 

• Almost all of the known  non-trivial strong coupling  phenomena can be 
continuously connected to weak coupling. 



Results of semi-classical  dynamics

• Confinement in QCD(adj) magnetic bion  effect, a configuration associated with 
the thimbles of critical points at infinity.

• Center stability at small-L is a combination of  perturbative loop effect and non-
perturbative neutral bion effect.

• Discrete chiral symmetry breaking is induced by monopole operators.  

• Unique string tension for the quarks in the defining representation (Unlike 
Polyakov and Seiberg-Witten which admits N-1  types fundamental string 
tensions).

• Almost all of the known  non-trivial strong coupling  phenomena can be 
continuously connected to weak coupling.   

• To go to strong coupling, TQFT coupling is very likely useful. 



Ann.Rev.Nucl.Part.Sci. 66 (2016) 245-272 • e-Print: 1601.03414 [hep-th]

For a review of some of these ideas, see 

https://arxiv.org/abs/1601.03414
https://arxiv.org/abs/1601.03414

