


































In this work we explore the θ dependence of the vacuum energy of the 4d SU(2) pure

Yang-Mills gauge theory. In sec. II, we perform lattices numerical calculations to determine

the first two coefficients in the θ expansion of the vacuum energy. The response of topological

excitations to the smearing procedure is investigated in detail in order to efficiently extract

physical information form lattice configurations. The coefficients determined at N = 2 are

compared to those previously obtained for N ≥ 3 to see whether the result at N = 2

can be seen as a natural extrapolation of those for N ≥ 3. In sec. III, we revisit CPN−1

model. After discussing characteristic features specific to CP1, a plausible argument about

the origin of the features is given. By applying the argument found in 2d CPN−1 model

to 4d SU(N) theory, we conclude that SU(2) Yang-Mills theory at θ = π is gapped with

spontaneous broken CP symmetry. The argument is made confident through a test using

available numerical data.

II. LATTICE SIMULATIONS

The vacuum energy can be expanded around θ = 0 as

E(θ)− E(0) =
χ

2
θ2
(
1 + b2 θ

2 + b4 θ
4 + · · ·

)
, (1)

where χ is the topological susceptibility, and b2i (i = 1, 2, 3, · · · ) are dimensionless coeffi-

cients describing the deviation of topological charge destribution from the Gaussian. These

quantities can be determined on the lattice from configurations generated at θ = 0 as

χ =
〈Q2〉θ=0

V
, (2)

b2 = −〈Q4〉θ=0 − 3 〈Q2〉2θ=0

12 〈Q2〉θ=0
, (3)

b4 =
〈Q6〉θ=0 − 15 〈Q2〉θ=0 〈Q4〉θ=0 + 30 〈Q2〉3θ=0

360 〈Q2〉θ=0
, (4)

where Q is the topological charge, whose precise definition is given in eqs. (10)-(14), and

〈· · · 〉θ=0 denotes an ensemble average over configurations generated with θ = 0. According

to the large N analysis [2, 4], these quantities can be expressed, as a function of N , as

χ(N) = χ(∞) +O(N−2) , (5)

b2i(N) =
b(1)2i

N2i
+O

(
1

N2i+2

)
. (6)
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β NS NTc (aTc)2 Lσ1/2
str statistics

1.750 16 4.65 0.0462 4.9 80,100

1.850 16 6.50 0.0237 3.5 71,040

1.975 16 9.50 0.0111 2.4 30,490

1.975 24 9.50 0.0111 3.6 131,830

TABLE I: The simulation parameters. Tc denotes the critical temperature. NTc is read from

Ref. [33]. The uncertainties of NTc are below 1% and hence neglected in the following.

short distance fluctuations, which we remove by introducing a smoothing technique. In the

APE smearing, new link variables U (new)
µ are constructed from old ones U (old)

µ as

U (new)
µ = Proj

[
(1− ρ)U(old)

µ (x) + ρXµ(x)
]
, (8)

Xµ(x) =
∑

ν !=µ

[
U (old)
ν (x)U (old)

µ (x+ ν̂)U (old)
ν

†
(x+ µ̂)

+U (old)
ν

†
(x− ν̂)U (old)

µ (x− ν̂)U (old)
ν (x− ν̂ + µ̂)

]
, (9)

where Proj acts as the projection back to an SU(2) element. This procedure minimizes

the action density. The parameter ρ is taken to be 0.2, which corresponds to αAPE =

6ρ/(1 + 5 ρ) = 0.6 in Ref. [37].

The 5-loop improved topological charge operator is given by

Q =
∑

x

q(x) , (10)

q(x) =
∑

i

ci qmi,ni(x) , (11)

qm,n(x) =
1

32π2

1

m2n2

∑

µ,ν,ρ,σ

εµ,ν,ρ,σTr
[
F̂µ,ν(x;m,n)F̂ρ,σ(x;m,n)

]
, (12)

F̂µ,ν(x;m,n) =
1

8
Im
[{

oriented clover average of (m× n) plaquette
}
+
{
(m ↔ n)

}]
,

(13)

where the coefficients are given by

c1 = (19− 55c5)/9, c2 = (1− 64c5)/9, c3 = (−64 + 640c5)/45,

c4 = 1/5− 2c5, c5 = 1/20 .
(14)
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FIG. 7: Histogram of Q for four ensembles at nAPE = 0, 20, 100.

Figure 8 shows the topological susceptibility in lattice unit, a4χ(nAPE) = 〈Q2〉/Nsite, as a

function of nAPE. A mild decrease is seen for nAPE ≥ 20 as expected from a negative constant

observed in Fig. 5. We determine topological susceptibility at each lattice by extrapolating

the smeared data in the second phase to nAPE → 0 because the “falling” is supposed to take

place even in the first pahse. The data points in nAPE ∈ [20, 40] are well described by a

linear function,

a4χ(nAPE) = a4χ(0) + c1 nAPE . (17)

The fit results are tabulated in Tab. II.

Figure 9 shows nAPE dependence of b2. Since b2 is found to be constant for nAPE ≥ 20,

β NS a4χ(0)× 104 c1 × 107 b2(0)× 102

1.750 16 3.08(2) −9.4(3) −5(5)

1.850 16 1.10(1) −1.8(1) −6(3)

1.975 16 0.269(8) −0.22(2) −4(2)

1.975 24 0.254(3) −0.20(1) −7(4)

TABLE II: Fit results.
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occurs also in the first phase, but it is hidden by changes originating from other reasons.

Instanton and anti-instantons will “fall” at an equal rate. In configurations with Q > 0,

more instantons exist than anti-instantons and vice versa. Then, it is expected that the

“decreasing” would happen more frequently than “increasing” in the second phase. To see

if this is the case, we calculate the ensemble average of

∆Q(nAPE) =





Q(nAPE + 1)−Q(nAPE) for Q(nAPE) > 0

Q(nAPE)−Q(nAPE + 1) for Q(nAPE) < 0
. (16)

The sign of ∆Q(nAPE) tells us which of “increase” or “decrease” happnes when going from

nAPE to nAPE+1. Figure 5 shows the nAPE dependence of |〈∆Q(nAPE)〉|, where the symbols

are filled when its original value is negative. The results from four ensembles show expo-
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FIG. 5: The decay rate of topological charge.

nential fall with approximately a common exponent for nAPE
<∼ 10, while they take almost

constant negative values for nAPE
>∼ 20. The result for β = 1.975 and NS = 16 (triangle-up)

shows slightly different behavior probably because of small physical volume. At any rate,

this plot clearly shows that the boundary separating the two phases is located nAPE ∼ 20.

In the following analysis, we only deal with the data for nAPE ≥ 20, where the short distance

fluctuations are gone.
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participation ratio defined by

P (nAPE) =
1

Nsite

(
∑

x

q(x, nAPE)
2

)2

∑

x

q(x, nAPE)
4

, (15)

where q(x, nAPE) denotes the topological charge density q(x) in eq. 11) after nAPE steps of

smearing. The participation ratio takes a value between 1/Nsite and 1. The maximal value

P (nAPE) = 1 is realized when q(x, nAPE) takes a flat distribution over the whole space-time.

On the other hand, the possible minimum value, 1/Nsite, is attained when the density forms

a local peak, q(x, nAPE) = δ(x). Figure 3 shows the smearing history of Q and lnP as a

function of nAPE for one particular configuration at β = 1.850. For nAPE
>∼ 30, whenever

Q changes, lnP shows a rapid increase after slow decrease over many smearing steps. This

can be interpreted as that a local object in topological charge density gradually shrinks and

suddenly disappears at some point with a change of Q. This is precisely what happens when

the “falling through the lattice” occurs [41].

We can explicitly see that the interpretation makes sense. Figure 4 shows the topological

charge density, projected onto the z-t plane, of the same configuration as in Fig. 3. Between

nAPE = 50 and 60 and nAPE = 450 and 470, Q increases by unity, at the same time a negative
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FIG. 3: An example of Q(nAPE) and lnP (nAPE) as a function of nAPE at β = 1.850.
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FIG. 4: Distribution of topological charge projected onto z-t plane at nAPE = 50, 60, 100, 200,

450, and 470.

peak disappears. Between nAPR = 100 and 200, a positive peak seems to be smeared but not

suddenly disappear. We guess that a pair annihilation or something complicated happens

in the latter case.

From these observations, we conclude that the changes of Q occuring in the second phase

are dominated by the “falling” of instantons or anti-instantons. The “falling” probably
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Before closing this subsection, let us add one comment. In Ref. [42], the shape of topolog-

ical objects in SU(3) gauge theory is examined, and the low dimensional long range structure

rather than local lump is discovered. Note that the analysis presented above does not indi-

cate anything about the shape because the smearing changes it. Clearly, it is interesting to

perform the similar study in the SU(2) case because the analysis performed in Refs. [43, 44]

suggests that the sturucture could be more local for SU(2) than for SU(3).

D. results

Figure 6 shows the Monte Carlo history of Q over thousand configurations in four ensem-

bles obtained at nAPE = 800. It is seen that the fluctuation of Q is frequent enough, and

the amplitudes depends on β and Nsite. In the following analysis, all the measurements are

binned with the bin size of 100 configurations, and a single elimination jackknife method is

used to estimate uncertainties.

Figure 7 shows the histogram of Q for four ensembles at nAPE = 0, 20, 100. Approximate

Gaussian shape is seen in all ensembles.
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FIG. 6: Monte Carlo history of Q at four ensembles.
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FIG. 7: Histogram of Q for four ensembles at nAPE = 0, 20, 100.

Figure 8 shows the topological susceptibility in lattice unit, a4χ(nAPE) = 〈Q2〉/Nsite, as a

function of nAPE. A mild decrease is seen for nAPE ≥ 20 as expected from a negative constant

observed in Fig. 5. We determine topological susceptibility at each lattice by extrapolating

the smeared data in the second phase to nAPE → 0 because the “falling” is supposed to take

place even in the first pahse. The data points in nAPE ∈ [20, 40] are well described by a

linear function,

a4χ(nAPE) = a4χ(0) + c1 nAPE . (17)

The fit results are tabulated in Tab. II.
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FIG. 8: a4χ for the four ensembles as a function of nAPE.

we perform the constant fit to extract b2 at nAPE = 0. The fit results are shown in Tab. II.

The values of b2 obtained at β = 1.975 with two lattice volumes turns out to be consistent

with each other due to the large statistical uncertainty, while 1.8 σ difference is observed

for χ. In Ref. [16], these quantities are calculated with several different volumes for SU(N)

with N = 3, 4, 6 down to Lσstr ∼ 2.7, and no finite volume effect is observed. Our lattice

with β = 1.975 and NS = 16 corresponds to Lσstr = 2.4 (see Tab. I), which is smaller than

but close to 2.7 and hence finite volume effects, if any, should not be significant. Thus, 1.8

σ difference observed at β = 1.975 is considered as a statistical fluctuation, and we include

both results in the following analysis.

Next we discuss the continuum limit. Figure 10 shows the extrapolation of χ/T 4
c and

b2 to the continuum. The limit for both quantities is examined by applying two functional

forms.

1. constant excluding the coarsest lattice
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FIG. 9: nAPE dependence of b2.

2. linear in a2 using all lattices

These two are chosen because they turn out to yield the smallest and largest value for χ/T 4
c

among other reasonable choices. In either quantities, the constant fit is taken as the central

value, and the difference between two methods is taken as the systematic uncertainty in the

final result.

The continuum limit of χ/T 4
c turns out to strongly depend on the functional form, and as

a result the error is dominated by the systematic uncertainty. On the other hand, thanks to

the constant behavior for b2, the inclusion of the linear term into the functional form does

not alter the limit for the constant fit by much. The final results thus obtained are

χ

T 4
c

= 0.200(39) ,
χ1/4

Tc
= 0.674(31) , b2 = −0.049(20) , (18)

where the errors are summed in quadrature.

In Refs. [14–16], the topological susceptibility χ is calculated in SU(N) gauge theory with

several values of N to study the large N behavior. In Refs. [14, 39, 45–47], χ is estimated for
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FIG. 10: The continuum limit of χ/T 4
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lattices.

SU(2) gauge theory. As for b2, the N dependence is studied for N ≥ 3 in Refs. [15, 16]. No

result is available for N = 2. Figure 11 shows the summary plot for χ/σ2
str and b2, including

our results. In this plot, we use Tc/
√
σstr = 0.7091(36) [34] to change the normalization to

χ/σ2
str. The solid lines shown in the plots are the linear fit performed in Ref. [16] using the

data at N = 3, 4, 6.

The results of χ/σstr for SU(2) are slightly larger than the solid line, but the deviation is

accountable by the next leading order correction of O(1/N4). It is then natural to expect

that dynamics of SU(2) gauge theory is a smooth extrapolation of the large N dynamics to

N = 2 and nothing special happens in between.

b2 at N = 2 obtained in this work turns out to be consistent with the instanton pre-

diction, bDIGA
2 = −1/12, within 1.7 σ. However, it is more consistent with the naive linear

extrapolation from the N ≥ 3 data to N = 2. This observation gives further support to the

above expectation, i.e. nothing special happens between N ≥ 3 and N = 2. Notice that, in

Ref. [48] b4 = 6(2)× 10−4 is obtained in the continuum limit, which clearly differs from the

instanton calculus, bDIGA
4 = 1/360.
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approximation (DIGA).
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